Skip to main content
Log in

Registration of point clouds using sample-sphere and adaptive distance restriction

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Registration of point clouds is a fundamental problem in shape acquisition and shape modeling. In this paper, a novel technique, the sample-sphere method, is proposed to register a pair of point clouds in arbitrary initial positions. This method roughly aligns point clouds by matching pairs of triplets of points, which are approximately congruent under rigid transformation. For a given triplet of points, this method can find all its approximately congruent triplets in O(knlog n) time, where n is the number of points in the point cloud, and k is a constant depending only on a given tolerance to the rotation error. By employing the techniques of wide bases and largest common point set (LCP), our method is resilient to noise and outliers. Another contribution of this paper is proposing an adaptive distance restriction to improve ICP (iterative closest point) algorithm, which is a classical method to refine rough alignments. With this restriction, the improved ICP is able to reject unreasonable corresponding point pairs during each iteration, so it can precisely align the point clouds which have large non-overlapping regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust surface registration. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  2. Almhdie, A., Léger, C., Deriche, M., Lédée, R.: 3d registration using a new implementation of the icp algorithm based on a comprehensive lookup matrix: Application to medical imaging. Pattern Recognit. Lett. 28(12), 1523–1533 (2007)

    Article  Google Scholar 

  3. Arya, S., David, M.M., Nathan, S.N., Silverman, R., Angela, Y.W.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basdogan Cagatay, O., Cengiz, A.: A new feature-based method for robust and efficient rigid-body registration of overlapping point clouds. Vis. Comput. 24(7–9), 679–688 (2008)

    Article  Google Scholar 

  5. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Bogdan, R.R., Nico, B., Michael, B.: Fast point feature histograms (fpfh) for 3d registration. In: ICRA’09: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 1848–1853. IEEE Press, Piscataway (2009)

    Google Scholar 

  7. Brown, B.J., Szymon, R.: Global non-rigid alignment of 3-d scans. ACM Trans. Graph. 26(3), 21 (2007)

    Article  Google Scholar 

  8. Dalley, G., Flynn, P.: Range image registration: A software platform and empirical evaluation. In: Proceedings of the 3th International Conference on 3-D Digital Imaging and Modeling, pp. 246–253. IEEE Comput. Soc., Los Alamitos (2001)

    Chapter  Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Gelfand, N., Niloy, J.M., Leonidas, J.G., Pottmann, H.: Robust global registration. In: SGP’05: Proceedings of the third Eurographics Symposium on Geometry Processing, pp. 197–206 (2005)

    Google Scholar 

  11. Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Practical methods for approximate geometric pattern matching under rigid motions: (preliminary version). In: Proceedings of the Tenth Annual Symposium on Computational Geometry, SCG ’94, pp. 103–112. ACM, New York (1994)

    Chapter  Google Scholar 

  12. Greenspan, M., Yurick, M.: Approximate k-d tree search for efficient icp. In: International Conference on 3D Digital Imaging and Modeling, p. 442 (2003)

    Chapter  Google Scholar 

  13. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4(4), 629–642 (1987)

    Article  MathSciNet  Google Scholar 

  14. Irani, S., Raghavan, P.: Combinatorial and experimental results for randomized point matching algorithms. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry, SCG ’96, pp. 68–77. ACM, New York (1996)

    Chapter  Google Scholar 

  15. Li, N., Cheng, P., Sutton, M.A., McNeill, S.R.: Three-dimensional point cloud registration by matching surface features with relaxation labeling method. Exp. Mech. 45(1), 71–82 (2005)

    Article  Google Scholar 

  16. Li, X., Igor, G., Jacob, B.: Robust alignment of multi-view range data to cad model. In: SMI ’06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, p. 17. IEEE Comput. Soc., Washington (2006)

    Google Scholar 

  17. Liu, Y.: Improving icp with easy implementation for free-form surface matching. Pattern Recognit. 37(2), 211–226 (2004)

    Article  MATH  Google Scholar 

  18. Liu, Y.: Automatic registration of overlapping 3d point clouds using closest points. Image Vis. Comput. 24(7), 762–781 (2006)

    Article  Google Scholar 

  19. Liu, Y.: A mean field annealing approach to accurate free form shape matching. Pattern Recognit. 40(9), 2418–2436 (2007)

    Article  MATH  Google Scholar 

  20. Liu, Y.: Replicator dynamics in the iterative process for accurate range image matching. Int. J. Comput. Vis. 83(1), 30–56 (2009)

    Article  Google Scholar 

  21. Liu, Y., Wei, B., Li, L., Zhou, H.: Projecting registration error for accurate registration of overlapping range images. Robot. Auton. Syst. 54(6), 428–441 (2006)

    Article  Google Scholar 

  22. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: IROS, pp. 3384–3391 (2008)

    Google Scholar 

  23. Rusu, R.B., Marton, Z.C., Blodow, N., Beetz, M.: Persistent point feature histograms for 3d point clouds. In: Proceedings of the 10th International Conference on Intelligent Autonomous Systems (2008)

    Google Scholar 

  24. Sharp, G.C., Lee, S.W., Wehe, D.K.: Icp registration using invariant features. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 90–102 (2002)

    Article  Google Scholar 

  25. Silva, L., Bellon, O., Boyer, K.: Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 762–776 (2005)

    Article  Google Scholar 

  26. Szymon, R., Marc, L.: Efficient variants of the icp algorithm. In: Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Y., Zhang, H. Registration of point clouds using sample-sphere and adaptive distance restriction. Vis Comput 27, 543–553 (2011). https://doi.org/10.1007/s00371-011-0580-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0580-0

Keywords

Navigation