Skip to main content
Log in

A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Recently, the ideal gas molecular movement (IGMM) algorithm was proposed by the authors as a new metaheuristic optimization technique for solving SOPs. In this paper, the intention is to extend the IGMM to solve MOPs while some modifications to the algorithm are taken place. The major improvement to the algorithm comprises usage of a neighbor-based non-dominated selection technique and defining a set of non-dominated solutions stored in an archive causing a globally faster convergence of the procedure. To evaluate the proposed algorithm, a set of standard benchmark problems, the so-called ZDT functions and two engineering benchmarks, are solved and the results were compared with five known multi-objective algorithms provided in the literature. Three different performance metrics; generational distance, spacing and maximum spread are introduced as well to evaluate multi-objective optimization problems. The Wilcoxon’s rank-sum nonparametric statistical test was also attempted which resulted on the fact that the proposed algorithm may exhibit a significantly better performance than those other techniques. The results from the real engineering applications also prove the advancement of the MO-IGMM performance in practice. Compared to five other multi-objective optimization evolutionary algorithms, simulation results show that in most cases, the proposed MO-IGMM is capable to find a much better uniformly spread of solutions with a faster convergence to the true Pareto optimal front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang G-G, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl. doi:10.1007/s00521-015-1923-y

    Google Scholar 

  2. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst. doi:10.1016/j.knosys.2015.07.006

    Google Scholar 

  3. Wang GG, Deb S, Coelho LSDS (2015) Earthworm optimization algorithm: a bioinspired metaheuristic algorithm for global optimization problems. Int J BioInspired Comput (in press)

  4. Wang GG, Deb S, Gao XZ, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J BioInspired Comput (in press)

  5. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53:1168–1183

    Article  Google Scholar 

  6. Wang G-G, Guo L, Wang H et al (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24:853–871. doi:10.1007/s00521-012-1304-8

    Article  Google Scholar 

  7. Wang G-G, Gandomi AH, Alavi AH (2014) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38:2454–2462. doi:10.1016/j.apm.2013.10.052

    Article  MathSciNet  Google Scholar 

  8. Guo L, Wang G-G, Gandomi AH et al (2014) A new improved krill herd algorithm for global numerical optimization. Neurocomputing 138:392–402. doi:10.1016/j.neucom.2014.01.023

    Article  Google Scholar 

  9. Wang G-G, Gandomi AH, Alavi AH (2013) Stud krill herd algorithm. Neurocomputing 128:1–8. doi:10.1016/j.neucom.2013.08.031

    Article  Google Scholar 

  10. Wang GG, Gandomi AH, Yang XS, Alavi AH (2014) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput Int J Comput Aided Eng Softw. doi:10.1108/EC-10-2012-0232

  11. Wang G-G, Lu M, Dong Y-Q, Zhao X-J (2016) Self-adaptive extreme learning machine. Neural Comput Appl 27:291–303. doi:10.1007/s00521-015-1874-3

    Article  Google Scholar 

  12. Wang GG, Gandomi AH, Yang XS, Alavi AH (2015) A new hybrid method based on krill herd and cuckoo search for global optimisation tasks Xin-She Yang. Int J BioInspired Comput (in press)

  13. Wang GG, Gandomi AH, Alavi AH, Deb S (2015) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput Appl. doi:10.1007/s00521-015-1914-z

    Google Scholar 

  14. Wang G-G, Guo L, Gandomi AH et al (2014) Chaotic Krill Herd algorithm. Inf Sci (Ny) 274:17–34. doi:10.1016/j.ins.2014.02.123

    Article  MathSciNet  Google Scholar 

  15. Wang G-G, Gandomi AH, Alavi AH (2013) A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42:962–978. doi:10.1108/K-11-2012-0108

    Article  MathSciNet  Google Scholar 

  16. Wang G-G, Deb S, Gandomi AH et al (2015) Chaotic cuckoo search. Soft Comput. doi:10.1007/s00500-015-1726-1

    Google Scholar 

  17. Dizangian B, Ghasemi MR (2015) Ranked-based sensitivity analysis for size optimization of structures. J Mech Des. doi:10.1115/1.4031295

    MATH  Google Scholar 

  18. Odu GO, Charles-Owaba OE (2013) Review of multi-criteria optimization methods—theory and applications. IOSR J Eng 3:01–14. doi:10.9790/3021-031020114

    Article  Google Scholar 

  19. Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    Book  MATH  Google Scholar 

  20. Dai C, Wang Y, Ye M (2015) A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci (Ny) 325:541–557. doi:10.1016/j.ins.2015.07.018

    Article  Google Scholar 

  21. Mirjalili S, Lewis A, Mirjalili SAM (2015) Multi-objective optimisation of marine propellers. Procedia Comput Sci 51:2247–2256. doi:10.1016/j.procs.2015.05.504

    Article  Google Scholar 

  22. Ghasemi MR, Farshchin M (2011) Ant colony optimisation-based multiobjective frame design under seismic conditions. Proc ICE Struct Build 164:421–432

    Article  Google Scholar 

  23. Liris S, Solnon C, Umr C (2010) Ant colony optimization for multi-objective optimization problems. In: 19th IEEE International Conference Tools with Artificial Intelligence. 10.1109/ICTAI.2007.108

  24. Ghasemi MR, Farshchin M (2009) Multi-objective weight and eigenperiod optimization of steel moment frames under seismic conditions, using ant colony method. In: Proceedings of 8th World Congress on Structural Multidisciplinary Optimization, Lisbon, Portugal. Paper no. 1362

  25. Ali M, Siarry P, Pant M (2012) An efficient differential evolution based algorithm for solving multi-objective optimization problems. Eur J Oper Res 217:404–416

    MathSciNet  MATH  Google Scholar 

  26. Kotinis M (2014) Improving a multi-objective differential evolution optimizer using fuzzy adaptation and K-medoids clustering. Soft Comput 18:757–771

    Article  Google Scholar 

  27. Jiang SW, Zhang J, Ong YS (2014) Multiobjective optimization based on reputation. Inf Sci (Ny) 286:125–146. doi:10.1016/J.Ins.2014.07.020

    Article  MathSciNet  MATH  Google Scholar 

  28. Gong M, Jiao L, Du H, Bo L (2008) Multiobjective immune algorithm with nondominated neighbor-based selection. Evol Comput 16:225–255. doi:10.1162/evco.2008.16.2.225

    Article  Google Scholar 

  29. Gao J, Wang J (2010) WBMOAIS: a novel artificial immune system for multiobjective optimization. Comput Oper Res 37:50–61

    Article  MathSciNet  MATH  Google Scholar 

  30. Bandyopadhyay S, Saha S, Maulik U, Deb K (2007) A simulated annealing based multi-objective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12:269–283. doi:10.1109/TEVC.2007.900837

    Article  Google Scholar 

  31. Suppapitnarm A, Seffen KA, Parks GT, Clarkson PJ (2000) A simulated annealing algorithm for multiobjective optimization. Eng Optim 33:59–85. doi:10.1080/03052150008940911

    Article  Google Scholar 

  32. Sadollah A, Eskandar H, Hoon J (2015) Water cycle algorithm for solving constrained multi-objective optimization problems. Appl Soft Comput J 27:279–298. doi:10.1016/j.asoc.2014.10.042

    Article  Google Scholar 

  33. Yang X (2011) Bat algorithm for multi-objective optimisation. Int J BioInspired Comput 3:267–274. doi:10.1504/IJBIC.2011.042259

    Article  Google Scholar 

  34. Yang X (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29:175–184

    Article  Google Scholar 

  35. Niu B, Wang H, Wang J, Tan L (2013) Multi-objective bacterial foraging optimization. Neurocomputing 116:336–345. doi:10.1016/j.neucom.2012.01.044

    Article  Google Scholar 

  36. Lahoz D, Lacruz B, Mateo PM (2013) A multi-objective micro genetic ELM algorithm. Neurocomputing 111:90–103. doi:10.1016/j.neucom.2012.11.035

    Article  Google Scholar 

  37. Costa e Silva MA, Coelho LDS, Lebensztajn L (2012) Multiobjective biogeography-based optimization based on predator-prey approach. Magn IEEE Trans 48:951–954

    Article  Google Scholar 

  38. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Evol Comput IEEE Trans 3:257–271. doi:10.1109/4235.797969

    Article  Google Scholar 

  39. Zitzler E, Laumanns M, Thiele L, et al (2001) SPEA2: Improving the strength pareto evolutionary algorithm. 95–100. doi:10.1.1.28.7571

  40. Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8:149–172

    Article  Google Scholar 

  41. Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7:205–230. doi:10.1162/evco.1999.7.3.205

    Article  Google Scholar 

  42. Coelho LDS, Alotto P, Alotto P (2008) Multiobjective electromagnetic optimization based on a nondominated sorting genetic approach with a chaotic crossover operator. Magn IEEE Trans 44:1078–1081. doi:10.1109/TMAG.2007.916027

    Article  Google Scholar 

  43. Deb K, Pratab S, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NGSA-II. IEEE Trans Evol Comput 6:182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  44. Madhkhan M, Kianpour A, Harchegani MET, Torki Harchegani ME (2013) Life-cycle cost optimization of prestressed simple-span concrete bridges with simple and spliced girders. Iran J Sci Technol Trans Civ Eng 37:53–66

    Google Scholar 

  45. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. Evol Comput IEEE Trans 8:256–279

    Article  Google Scholar 

  46. Coelho LDS, Ayala HVH, Alotto P (2010) A multiobjective gaussian particle swarm approach applied to electromagnetic optimization. IEEE Trans Magn 46:3289–3292. doi:10.1109/TMAG.2010.2047250

    Article  Google Scholar 

  47. Varaee H, Ghasemi MR (2016) Engineering optimization based on ideal gas molecular movement algorithm. Eng Comput. doi:10.1007/s00366-016-0457-y

    Google Scholar 

  48. Moore FL (1963) Kinetic theory of gases. Am J Phys 31:213. doi:10.1119/1.1969378

    Article  Google Scholar 

  49. Hirschfelder JO, Curtiss CF, Byron Bird R (1966) The molecular theory of gases and liquids. Wiley, London

    MATH  Google Scholar 

  50. Harsha K (2005) Principles of physical vapor deposition of thin films. Eur J Contracept Reprod Health Care 6:1155. doi:10.1016/B978-081551442-8.50020-1

    Google Scholar 

  51. Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26:369–395

    Article  MathSciNet  MATH  Google Scholar 

  52. Knowles JD, Corne DW (1999) Local search, multiobjective optimization and the Pareto archived evolution strategy. In: Proc. Third Aust. Jt. Work. Intell. Evol. Syst, pp 209–216

  53. Coello CAC (2009) Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Front Comput Sci China 3:18–30

    Article  Google Scholar 

  54. Coello CAC, Reyes-Sierra M (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2:287–308. doi:10.5019/j.ijcir.2006.68

    MathSciNet  Google Scholar 

  55. Mirjalili S, Lewis A (2015) Novel performance metrics for robust multi-objective optimization algorithms. Swarm Evol Comput 21:1–23

    Article  Google Scholar 

  56. Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. doi:10.1007/s00521-015-1920-1

    Google Scholar 

  57. Branke J, Kaußler T, Schmeck H (2001) Guidance in evolutionary multi-objective optimization. Adv Eng Softw 32:499–507

    Article  MATH  Google Scholar 

  58. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83. doi:10.2307/3001968

    Article  Google Scholar 

  59. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. doi:10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  60. Mirjalili SM, Mirjalili SM, Yang X-SS (2013) Binary bat algorithm. Neural Comput Appl 25:663–681. doi:10.1007/s00521-013-1525-5

    Article  Google Scholar 

  61. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. Evol Comput IEEE Trans 11:712–731. doi:10.1109/TEVC.2007.892759

    Article  Google Scholar 

  62. Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: Parallel Problem Solving from Nature PPSN VI, pp 839–848

  63. Dai C, Wang Y (2015) A new decomposition based evolutionary algorithm with uniform designs for many-objective optimization. Appl Soft Comput 30:238–248. doi:10.1016/j.asoc.2015.01.062

    Article  Google Scholar 

  64. Kaveh A, Laknejadi K (2013) A new multi-swarm multi-objective optimization method for structural design. Adv Eng Softw J 58:54–69. doi:10.1016/j.advengsoft.2013.01.004

    Article  MATH  Google Scholar 

  65. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8:173–195

    Article  Google Scholar 

  66. Deb K, Sinha A, Kukkonen S (2006) Multi-objective test problems, linkages, and evolutionary methodologies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation ACM, pp 1141–1148

  67. Lagaros ND, Plevris V, Papadrakakis M (2005) Multi-objective design optimization using cascade evolutionary computations. Comput Methods Appl Mech Eng 194:3496–3515. doi:10.1016/j.cma.2004.12.029

    Article  MATH  Google Scholar 

  68. Amouzgar K, Rashid A, Stromberg N (2013) Multi-objective optimization of a disc brake system by using spea2 and RBFN. Am Soc Mech Eng. doi:10.1115/DETC2013-12809

    Google Scholar 

  69. Alimi A, Zandieh M, Amiri M (2012) Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory. Int J Ind Eng Comput 3:859–872. doi:10.5267/j.ijiec.2012.05.005

    Google Scholar 

  70. Balasubbareddy M, Sivanagaraju S, Suresh CV (2015) Multi-objective optimization in the presence of practical constraints using non-dominated sorting hybrid cuckoo search algorithm. Eng Sci Technol Int J 18:603–615. doi:10.1016/j.jestch.2015.04.005

    Article  Google Scholar 

  71. Pham D, Ghanbarzadeha A (2007) Multi–objective optimisation using the bees algorithm. In: Memorias del Innov. Prod. Mach. Syst. Virtual Conf, pp 529–533

  72. Yang X-SS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40:1616–1624. doi:10.1016/j.cor.2011.09.026

    Article  MathSciNet  MATH  Google Scholar 

  73. Jancirani J, Chandrasekaran S, Tamilporai P (2004) Optimum design of disc brake parameters using genetic algorithm. Int J Innov Res Sci Eng Technol 3:1400–1405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ghasemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M.R., Varaee, H. A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm. Engineering with Computers 33, 477–496 (2017). https://doi.org/10.1007/s00366-016-0485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0485-7

Keywords

Navigation