Skip to main content
Log in

Exact Recovery of Dirac Ensembles from the Projection Onto Spaces of Spherical Harmonics

  • Published:
Constructive Approximation Aims and scope

Abstract

In this work, we consider the problem of recovering an ensemble of Diracs on the sphere from its projection onto spaces of spherical harmonics. We show that under an appropriate separation condition on the unknown locations of the Diracs, the ensemble can be recovered through total variation norm minimization. The proof of the uniqueness of the solution uses the method of ‘dual’ interpolating polynomials and is based on Candès and Fernandez-Granda (Commun Pure Appl Math 67:906–956, 2014), where the theory was developed for trigonometric polynomials. We also show that in the special case of nonnegative ensembles, a sparsity condition is sufficient for exact recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alem, Y., Chae, D., Kennedy, R.: Sparse signal recovery on the sphere: optimizing the sensing matrix through sampling. In: 2012 6th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–6. IEEE (2012)

  2. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Springer, Berlin (2012)

    Book  Google Scholar 

  3. Arridge, S.: Optical tomography in medical imaging. Inverse Prob. 15, R41–R91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audet, P.: Directional wavelet analysis on the sphere: application to gravity and topography of the terrestrial planets. J. Geophys. Res. Planets (1991–2012), 116(E1) (2011).

  5. Ben Hagai, I., Fazi, F., Rafaely, B.: Generalized sampling expansion for functions on the sphere. IEEE Trans. Sig. Proc. 60(11), 5870–5879 (2012)

  6. Bendory, T., Dekel, S., Feuer, A.: Exact recovery of non-uniform splines from the projection onto spaces of algebraic polynomials. J. Approx. Theory 182, 7–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bendory, T., Dekel, S., Feuer, A.: Super-resolution on the sphere via semi-definite programming (submitted)

  8. Candès, E., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67, 906–956 (2014)

    Article  MATH  Google Scholar 

  9. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum mechanics. Hermann (1977)

  10. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  11. De Castro, Y., Gamboa, F.: Exact reconstruction using beurling minimal extrapolation. J. Math. Anal. Appl. 395, 336–354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D., Tanner, J.: Sparse nonnegative solutions of undermined linear equations by linear programming. PNAS 102, 9446–9451 (2005)

    Article  MathSciNet  Google Scholar 

  13. Klosko, S.M., Wagner, C.A.: Spherical harmonic representation of the gravity field from dynamic satellite data. Planet. Space Sci. 30(1), 5–28 (1982)

    Article  Google Scholar 

  14. Komatsu, E., Smith, K., Dunkley, J., Bennett, C., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Nolta, M., Page, L., Spergel, D., Halpern, M., Hill, R., Kogut, A., Limon, M., Meyer, S., Odegard, N., Tucker, G., Weiland, J., Wollack, E., Wright, E.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192(2), 18 (2011)

    Article  Google Scholar 

  15. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  16. MacRobert, T.: Spherical harmonics: an elementary treatise on harmonic functions. Bull. Am. Math. Soc. 34, 779–780 (1928)

    Article  Google Scholar 

  17. McEwen, J., Wiaux, Y.: A novel sampling theorem on the sphere. IEEE Trans. Signal Process. 59, 5876–5887 (2011)

    Article  MathSciNet  Google Scholar 

  18. McEwen, J., Puy, G., Thiran, J., Vandergheynst, P., Van De Ville, D., Wiaux, Y.: Sparse image reconstruction on the sphere: implications of a new sampling theorem. arXiv preprint. arXiv:1205.1013 (2012)

  19. Meyer, J.: Beamforming for a circular microphone array mounted on spherically shaped objects. J. Acoust. Soc. Am. 109, 185 (2001)

    Article  Google Scholar 

  20. Meyer, J., Agnello, T.: Spherical microphone array for spatial sound recording. In: Audio Engineering Society Convention, vol. 115. Audio Engineering Society (2003)

  21. Narcowich, F., Petrushev, P., Ward, J.: Decomposition of besov and Triebel–Lizorkin spaces on the sphere. J. Funct. Anal. 238, 530–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rauhut, H., Ward, R.: Sparse recovery for spherical harmonic expansions. In: Proceedings of SAMPTA (2011)

  23. Rafaely, B.: Analysis and design of spherical microphone arrays. IEEE Trans. Speech Audio Process. 13(1), 135–143 (2005)

    Article  Google Scholar 

  24. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  25. Sloan, P.: Stupid spherical harmonics (sh) tricks. In: Game Developers Conference (2008)

  26. Taguchi, K., Zeng, G., Gullberg, G.: Cone-beam image reconstruction using spherical harmonics. Phys. Med. Biol. 46(6), N127 (2001)

    Article  Google Scholar 

  27. Zhang, F.: The Schur Complement and its applications, vol. 4. Springer, Berlin (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai Dekel.

Additional information

Communicated by Yuan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendory, T., Dekel, S. & Feuer, A. Exact Recovery of Dirac Ensembles from the Projection Onto Spaces of Spherical Harmonics. Constr Approx 42, 183–207 (2015). https://doi.org/10.1007/s00365-014-9263-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9263-1

Keywords

Mathematics Subject Classification

Navigation