Skip to main content

Advertisement

Log in

A propensity score adjustment method for longitudinal time series models under nonignorable nonresponse

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Analysis of data with nonignorable nonresponse is an important and challenging task. Although some methods have been developed for inference under nonignorable nonresponse, they are only available for independent data. In this paper, we develop a two-stage propensity score adjustment method to estimate longitudinal time series models with nonignorable missingness. In particular, the response probability or propensity score is first estimated via solving the mean score equation based on the observed sample. Then, the inverse propensity scores are employed to conduct weighting adjustment for a composite likelihood based estimation. The propensity scores weighted estimation equations are shown to yield consistent and asymptotic normal estimators. Simulation studies and application to AIDS Clinical Trial data are presented to evaluate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahari F, Parsi S, Ganjali M (2019) Empirical likelihood inference in general linear model with missing values in response and covariates by MNAR mechanism. Stat Pap. https://doi.org/10.1007/s00362-019-01103-0

    Article  MATH  Google Scholar 

  • Bickel PJ, Doksum KA (1977) Mathematical statistics: basic ideas and selected topics. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Binder DA (1983) On the variances of asymptotically normal estimators from complex surveys. Int Stat Rev 51(3):279–292

    Article  MathSciNet  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Davis RA, Yau CY (2011) Comments on pairwise likelihood in time series models. Stat Sin 21(1):255–277

    MathSciNet  MATH  Google Scholar 

  • Da Silva DN, Opsomer JD (2009) Nonparametric propensity weighting for survey nonresponse through local polynomial regression. Surv Methodol 35(2):165–176

    Google Scholar 

  • Da Silva DN, Opsomer JD (2006) A kernel smoothing method of adjusting for unit non-response in sample surveys. Can J Stat 34(4):563–579

    Article  MathSciNet  Google Scholar 

  • Eideh AAH, Nathan G (2006) Fitting time series models for longitudinal survey data under informative sampling. J Stat Plan Inference 136(9):3052–3069

    Article  MathSciNet  Google Scholar 

  • Folsom, R. E. (1991). Exponential and logistic weight adjustments for sampling and nonresponse error reduction. Proceedings of the Social Statistics Section, American Statistical Association, pp 197–202

  • Härdle W (1990) Applied nonparametric regression. Cambridge University Press, Boston

    Book  Google Scholar 

  • Jiang DP, Zhao PY, Tang NS (2016) A propensity score adjustment method for regression models with nonignorable missing covariates. Comput Stat Data Anal 94:98–119

    Article  MathSciNet  Google Scholar 

  • Joe H, Lee Y (2009) On weighting of bivariate margins in pairwise likelihood. J Multivar Anal 100(4):670–685

    Article  MathSciNet  Google Scholar 

  • Kim JK, Im J (2014) Propensity score adjustment with several follow-ups. Biometrika 101(2):439–448

    Article  MathSciNet  Google Scholar 

  • Kim JK, Riddles MK (2012) Some theory for propensity-score-adjustment estimators in survey sampling. Surv Methodol 38(2):157–165

    Google Scholar 

  • Kim JK (2011) Parametric fractional imputation for missing data analysis. Biometrika 98:119–132

    Article  MathSciNet  Google Scholar 

  • Kim JK, Kim JJ (2007) Nonresponse weighting adjustment using estimated response probability. Can J Stat 35(4):501–514

    Article  MathSciNet  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data. Wiley, New York

    Book  Google Scholar 

  • Little RJA (1986) Survey nonresponse adjustments for estimates of means. Int Stat Rev 54(2):139–157

    Article  Google Scholar 

  • Little RJA (1988) Missing-data adjustments in large surveys. J Bus Econ Stat 6(3):287–296

    Google Scholar 

  • Liu Q, Pierce DA (1994) A note on Gauss-Hermite quadrature. Biometrika 81(3):624–629

    MathSciNet  MATH  Google Scholar 

  • Liu T, Yuan X (2018) Doubly robust augmented-estimating-equations estimation with nonignorable nonresponse data. Stat Pap. https://doi.org/10.1007/s00362-018-1046-5

    Article  MATH  Google Scholar 

  • Ng CT, Joe H, Karlis D, Liu J (2011) Composite likelihood for time series models with a latent autoregressive process. Stat Sin 21(1):279–305

    MathSciNet  MATH  Google Scholar 

  • Priya RD, Kuppuswami S, Sivaraj R (2015) Bayesian based inference of missing time series values using Genetic Algorithm. Int J Hybrid Intell Syst 12:77–87

    Google Scholar 

  • Qin J, Leung D, Shao J (2002) Estimation with survey data under nonignorable nonresponse or informative sampling. J Am Stat Assoc 97(457):193–200

    Article  MathSciNet  Google Scholar 

  • Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41–55

    Article  MathSciNet  Google Scholar 

  • Riddles MK, Kim JK, Im J (2016) A propensity-score-adjustment method for nonignorable nonresponse. J Surv Stat Methodol 4(2):215–245

    Article  Google Scholar 

  • Rubin DB (1976) Inference and missing data. Biometrika 63(3):581–592

    Article  MathSciNet  Google Scholar 

  • Stubbendick AL, Ibrahim JG (2006) Likelihood-based inference with nonignorable missing responses and covariates in models for discrete longitudinal data. Stat Sin 16:1143–1167

    MathSciNet  MATH  Google Scholar 

  • Shao J, Wang L (2016) Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika 103(1):175–187

    Article  MathSciNet  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  • Tang NS, Zhao PY, Zhu HT (2014) Empirical likelihood for estimating equations with nonignorably missing data. Stat Sin 24:723–747

    MathSciNet  MATH  Google Scholar 

  • Tseng CH, Elashoff R, Li N, Li G (2016) Longitudinal data analysis with non-ignorable missing data. Stat Methods Med Res 25(1):205–220

    Article  MathSciNet  Google Scholar 

  • Van Der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vasdekis VGS, Rizopoulos D, Moustaki I (2014) Weighted pairwise likelihood estimation for a general class of random effects models. Biostatistics 15(4):677–689

    Article  Google Scholar 

  • Wang L, Qi CC, Shao J (2019) Model-assisted regression estimators for longitudinal data with nonignorable dropout. Int Stat Rev 87(S1):S121–S138

    Article  MathSciNet  Google Scholar 

  • Yuan Y, Yin GS (2010) Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66:105–114

    Article  MathSciNet  Google Scholar 

  • Zhang H, Paik MC (2009) Handling missing responses in generalized linear mixed model without specifying missing mechanism. J Biopharm Stat 19(6):1001–1017

    Article  MathSciNet  Google Scholar 

  • Zhang GY, Yuan Y (2012) Bayesian modelling longitudinal dyadic data with nonignorable dropout, with application to a breast cancer study. Ann Appl Stat 6(2):753–771

    Article  MathSciNet  Google Scholar 

  • Zhang W, Xie F, Tan J (2020) A robust joint modeling approach for longitudinal data with informative dropouts. Comput Stat. https://doi.org/10.1007/s00180-020-00972-6

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao PY, Wang L, Shao J (2018) Analysis of longitudinal data under nonignorable nonmonotone nonresponse. Stat Interface 11(2):265–279

    Article  MathSciNet  Google Scholar 

  • Zhou M, Kim JK (2012) An efficient method of estimation for longitudinal surveys with monotone missing data. Biometrika 99:631–648

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor, the Associate Editor and referees for their constructive comments. The collaborative work described in this paper was supported by HKSAR-RGC-GRF Nos 14305517, 14601015 and 14302719 (Yau) and National Social Science Foundation of China, No. 18BTJ022 (Liu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of the response model identifiability. For the response model identifiability, the mean score function \(\bar{S}(\eta )\) is not identifiable if there exist different \(\eta \) and \(\eta '\) such that \(\bar{S}(\eta )=\bar{S}(\eta ')\) for all \(x_{i}\), \(\delta _{i,t}\) and \(y_{i,t}\). To be specific, the mean score function \(\bar{S}(\eta )\) in (3.7) consists of two parts, \(\sum \nolimits _{i=1}^{n}\sum \nolimits _{t=2}^{T}\delta _{i,t}s_{y_{i,t}}(\eta )\) and

$$\begin{aligned} \sum \limits _{i=1}^{n}\sum \limits _{t=2}^{T}(1-\delta _{i,t})\frac{\int \pi ^{-1}_{y}(\eta )\hat{f}(y|x_{i},\delta _{i,t}=1)\partial \pi _{y}(\eta )/\partial \eta dy}{\int (\pi ^{-1}_{y}(\eta )-1)\hat{f}(y|x_{i},\delta _{i,t}=1)dy} \,. \end{aligned}$$
(A1)

The first part is not identifiable if and only if two different \(\eta \) and \(\eta '\) give the same \(s_{y_{i,t}}(\eta )=\{\delta _{i,t}-\pi _{i,t}(\eta )\}\pi ^{-1}_{i,t}(\eta )\{1-\pi _{i,t}(\eta )\}^{-1}\partial \pi _{i,t} (\eta )/\partial \eta \) for all possible values of \(x_{i}\), \(\delta _{i,t}\) and \(y_{i,t}\), where \(\pi _{i,t} (\eta )\) is defined by (2.2). Here, we take the derivative of \(\pi _{i,t}(\eta )\) with respect to \(\eta _{1}\) for example, then we have

$$\begin{aligned} s_{y_{i,t}}(\eta )&=\{\delta _{i,t}-\pi _{i,t}(\eta )\}\pi ^{-1}_{i,t}(\eta )\{1-\pi _{i,t}(\eta )\}^{-1}\partial \pi _{i,t} (\eta )/\partial \eta _{1} \nonumber \\&= \frac{x_{i}[\delta _{i,t}\exp (-\eta _{1}x_{i}-\eta _{2}y_{i,t})+\delta _{i,t}-1]}{1+\exp (-\eta _{1}x_{i}-\eta _{2}y_{i,t})} \,. \end{aligned}$$
(A2)

Suppose that there exist that \(\eta =(\eta _{1}, \eta _{2})\) and \(\eta '=(\eta '_{1}, \eta '_{2})\) such that

$$\begin{aligned} \frac{x_{i}[\delta _{i,t}\exp (-\eta _{1}x_{i}-\eta _{2}y_{i,t})+\delta _{i,t}-1]}{1+\exp (-\eta _{1}x_{i}-\eta _{2}y_{i,t})}&=\frac{x_{i}[\delta _{i,t}\exp (-\eta '_{1}x_{i}-\eta '_{2}y_{i,t})+\delta _{i,t}-1]}{1+\exp (-\eta '_{1}x_{i}-\eta '_{2}y_{i,t})} \end{aligned}$$
(A3)

for all values of \(x_{i}\), \(\delta _{i,t}\) and \(y_{i,t}\). It is easy to see that \(\eta '_{1}=\eta _{1}\) must hold. Also, if \(\eta '_{1}=\eta _{1} \ne 0\), then by taking \(x_{i}\) sufficiently large or negative, we have \(\delta _{i,t}\exp (-\eta _{1}x_{i}-\eta _{2}y_{i,t})+\delta _{i,t}-1=\delta _{i,t}\exp (-\eta '_{1}x_{i}-\eta '_{2}y_{i,t})+\delta _{i,t}-1\). It follows that \(\eta '_{2}=\eta _{2}\). That is, the first part is identifiable.

The second part in (A1) is not identifiable if and only if two different \(\eta \) and \(\eta '\) give the same \(\pi ^{-1}_{y}(\eta )\partial \pi _{y}(\eta )/\partial \eta = \pi ^{-1}_{y}(\eta ')\partial \pi _{y}(\eta ')/\partial \eta \) and \(\pi ^{-1}_{y}(\eta )-1=\pi ^{-1}_{y}(\eta ')-1\) for all possible values of \(x_{i}\), \(\delta _{i,t}\) and \(y_{i,t}\), because \(\hat{f}(y|x_{i},\delta _{i,t}=1)\) in (A1) is obtained by (3.6) and not related to the parameter \(\eta \). Similar to the discussion in the first part, we have that two different \(\eta \) and \(\eta '\) cannot produce the equal second part. That is, the second part is also identifiable. Thus, the response model parameter \(\eta \) estimated by the mean score equation in (3.7) is identifiable.

Proof of Lemma 1

Note that

$$\begin{aligned} \mathcal {I}_{21}(\theta , \eta )=&-E\bigg \{ \frac{\partial u(\theta ; \eta )}{\partial \eta }\bigg \}\nonumber \\ =&-E\bigg \{ \sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}\frac{\partial \delta _{t-k}\delta _{t}\pi ^{-1}_{t-k}(\eta )\pi ^{-1}_{t}(\eta )U(\theta ;y_{t-k},y_{t})}{\partial \eta }\bigg \}\nonumber \\ =&E\bigg \{\sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T} \frac{\delta _{t-k}\delta _{t}U(\theta ;y_{t-k},y_{t})\partial \pi _{t-k}(\eta )/ \partial \eta }{\pi ^{2}_{t-k}(\eta )\pi _{t}(\eta )} \nonumber \\&+ \sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}\frac{ \delta _{t-k}\delta _{t}U(\theta ;y_{t-k},y_{t}) \partial \pi _{t}(\eta )/ \partial \eta }{\pi _{t-k}(\eta )\pi ^{2}_{t}(\eta )}\bigg \} \nonumber \\ =&E\bigg \{ \sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}\frac{\delta _{t-k}\delta _{t}U(\theta ;y_{t-k},y_{t})(1-\pi _{t-k}(\eta ))z(x,y_{t-k};\eta )}{\pi _{t-k}(\eta )\pi _{t}(\eta )}\nonumber \\&+\sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T} \frac{\delta _{t-k}\delta _{t}U(\theta ;y_{t-k},y_{t})(1-\pi _{t}(\eta ))z(x,y_{t};\eta )}{\pi _{t-k}(\eta )\pi _{t}(\eta )}\bigg \} \nonumber \\ =&E\bigg \{ \sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}\frac{ \delta _{t-k}\delta _{t}U(\theta ;y_{t-k},y_{t})(\delta _{t-k}-\pi _{t-k}(\eta ))z(x,y_{t-k};\eta )}{\pi _{t-k}(\eta )\pi _{t}(\eta )} \nonumber \\&+ \sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}\frac{ \delta _{t-k}\delta _{t}U(\theta ;y_{t-k},y_{t})(\delta _{t}-\pi _{t}(\eta ))z(x,y_{t};\eta )}{\pi _{t-k}(\eta )\pi _{t}(\eta )}\bigg \} \nonumber \\ =&E\Big \{\sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}\delta _{t-k}\delta _{t}\pi ^{-1}_{t-k}(\eta )\pi ^{-1}_{t}(\eta )U(\theta ;y_{t-k},y_{t})\nonumber \\&\cdot \big [ s^{T}(\eta ;\delta _{t-k},x,y_{t-k})+ s^{T}(\eta ;\delta _{t},x,y_{t}) \big ]\Big \}\,, \end{aligned}$$
(A4)

where \(z(x,y_{t};\eta )=\pi ^{-1}_{t}(\eta )\{1-\pi _{t}(\eta )\}^{-1}\partial \pi _{t}(\eta )/\partial \eta \), yielding (4.1). \(\square \)

Since \(u(\theta ; \eta )= \sum \nolimits _{k=1}^{K}\sum \nolimits _{t=k+1}^{T}\delta _{t-k}\delta _{t}\pi ^{-1}_{t-k}(\eta )\pi ^{-1}_{t}(\eta )U(\theta ;y_{t-k},y_{t})\), and the partial derivatives \(\partial U(\theta ;y_{t-k},y_{t})/ \partial \theta ^{T}\) of \(U(\theta ; y_{t-k},y_{t})\) with respect to \(\theta \) exist for \(k=1,\ldots , K\), the equation (4.2) obviously holds.

Proof of Theorem 1

Taking expectation on \(\bar{S}(\eta )\), we have

$$\begin{aligned} E(\bar{S}(\eta ))= & {} E\Big \{\sum \limits _{i=1}^{n}\sum \limits _{t=2}^{T}\big \{\delta _{i,t}s(\eta ;\delta _{i,t},x_{i},y_{i,t}) \nonumber \\&+(1-\delta _{i,t})E[s(\eta ;\delta _{i,t},x_{i},Y_{t})|x_{i},\delta _{i,t}=0]\big \}\Big \} \nonumber \\= & {} \sum \limits _{i=1}^{n}\sum \limits _{t=2}^{T}\Big \{ E[\delta _{i,t}s(\eta ;\delta _{i,t},x_{i},y_{i,t})] \nonumber \\&+ E\{(1-\delta _{i,t})E[s(\eta ;\delta _{i,t},x_{i},Y_{t})|x_{i},\delta _{i,t}=0]\} \Big \}\nonumber \\= & {} \sum \limits _{i=1}^{n}\sum \limits _{t=2}^{T}\Big \{ E[\delta _{i,t}\{\delta _{i,t}-\pi (x_{i},y_{i,t};\eta )\}z(x_{i},y_{i,t};\eta )]\nonumber \\&+ E\{(1-\delta _{i,t})E[\{\delta _{i,t}-\pi (x_{i},Y_{t};\eta )\}z(x_{i},Y_{t};\eta )|x_{i},\delta _{i,t}=0]\} \Big \}\nonumber \\= & {} \sum \limits _{i=1}^{n}\sum \limits _{t=2}^{T}\Big \{ E[\pi (x_{i},y_{i,t};\eta )(1-\pi (x_{i},y_{i,t};\eta ))z(x_{i},y_{i,t};\eta )]\nonumber \\&- E\{(1-\delta _{i,t})E[(\pi (x_{i},Y_{t};\eta ))z(x_{i},Y_{t};\eta )|x_{i}]\} \Big \}\nonumber \\= & {} \sum \limits _{i=1}^{n}\sum \limits _{t=2}^{T}\Big \{ E[\partial \pi (x_{i},y_{i,t};\eta )/\partial \eta ]\nonumber \\&- E\{E[(1-\pi (x_{i},Y_{t};\eta ))\pi (x_{i},Y_{t};\eta )z(x_{i},Y_{t};\eta )|x_{i}]\} \Big \} \nonumber \\= & {} \sum \limits _{i=1}^{n}\sum \limits _{t=2}^{T}\Big \{E[\partial \pi (x_{i},y_{i,t};\eta )/\partial \eta ]- E[\partial \pi (x_{i},Y_{t};\eta )/\partial \eta ] \Big \}=0\,. \end{aligned}$$
(A5)

That is, \(\bar{S}(\eta )\) is unbiased. It follows from standard asymptotic theory that \(\widehat{\eta }\) is a consistent estimator of \(\eta _{0}\). \(\square \)

In fact, \(U_{PS}(\theta ; \widehat{\eta })\) is also unbiased because

$$\begin{aligned} E\Big \{U_{PS}(\theta ; \widehat{\eta })\Big \} =&E\Big \{\sum \limits _{i=1}^{n}\sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}\delta _{i,t-k}\delta _{i,t}\pi ^{-1}_{i,t-k}(\widehat{\eta })\pi ^{-1}_{i,t}(\widehat{\eta })U(\theta ;y_{i,t-k},y_{i,t}) \Big \}\nonumber \\ =&\, E\Big \{\sum \limits _{i=1}^{n}\sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}E\big [\delta _{i,t-k}\delta _{i,t}\pi ^{-1}_{i,t-k}(\widehat{\eta })\pi ^{-1}_{i,t}(\widehat{\eta })\nonumber \\&\quad U(\theta ;y_{i,t-k},y_{i,t})| x_{i}, y_{i,t-k},y_{i,t}\big ] \Big \}\nonumber \\ =&\, E\Big \{\sum \limits _{i=1}^{n}\sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}\pi ^{-1}_{i,t-k}(\eta _{0})\pi ^{-1}_{i,t}(\eta _{0})U(\theta ;y_{i,t-k},y_{i,t})\nonumber \\&\quad E\big [\delta _{i,t-k}\delta _{i,t}| x_{i}, y_{i,t-k},y_{i,t}\big ] \Big \}\nonumber \\ =&\, E\Big \{\sum \limits _{i=1}^{n}\sum \limits _{k=1}^{K}\sum \limits _{t=k+1}^{T}U(\theta ;y_{i,t-k},y_{i,t}) \Big \}\nonumber \\ =&\, E\Big \{\sum \limits _{k=1}^{K}U(\theta ;y_{t-k},y_{t}) \Big \}=0\,. \end{aligned}$$
(A6)

Therefore, \(\widehat{\theta }_{PS}\) is a consistent estimator of \(\theta _{0}\).

Proof of Theorem 2

Let \(s(\eta )=\sum \limits _{t=2}^{T}\big \{\delta _{t}s(\eta ;\delta _{t},x,y_{t})+(1-\delta _{t})E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\big \}\) and

$$\begin{aligned}&\dot{s}(\eta ;\delta _{t},x,y_{t}) = \partial s(\eta ;\delta _{t},x,y_{t})/ \partial \eta ^{T} \nonumber \\&\quad = (\delta _{t}-\pi (x,y_{t};\eta ))\frac{ \partial z(x,y_{t};\eta )}{\partial \eta ^{T}}- z(x,y_{t};\eta )\frac{ \partial \pi (x,y_{t};\eta )}{\partial \eta ^{T}}\,. \end{aligned}$$
(A7)

We have

$$\begin{aligned} \frac{\partial s(\eta )}{\partial \eta ^{T}} = \sum \limits _{t=2}^{T}\bigg \{\delta _{t} \dot{s}(\eta ;\delta _{t},x,y_{t}) + (1-\delta _{t}) \frac{\partial E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]}{\partial \eta ^{T}}\bigg \}\,. \end{aligned}$$
(A8)

Since

$$\begin{aligned} E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]=\frac{\int s(\eta ;\delta _{t},x,y)f(y|x,\delta _{t}=1)O(x,y;\eta )dy}{\int O(x,y;\eta )f(y|x,\delta _{t}=1)dy}\,, \end{aligned}$$
(A9)

the derivative \(\partial E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]/ \partial \eta ^{T}\) in the Eq. (A8) can be written as

$$\begin{aligned} \frac{\partial E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]}{\partial \eta ^{T}}=&\frac{\int \dot{s}(\eta ;\delta _{t},x,y)\hat{f}(y|x,\delta _{t}=1)O(x,y;\eta )dy}{\int O(x,y;\eta )\hat{f}(y|x,\delta _{t}=1)dy}\nonumber \\&+ \frac{\int s(\eta ;\delta _{t},x,y)\hat{f}(y|x,\delta _{t}=1) \partial O(x,y;\eta )/ \partial \eta ^{T} dy}{\int O(x,y;\eta )\hat{f}(y|x,\delta _{t}=1)dy}\nonumber \\&- \frac{\int s(\eta ;\delta _{t},x,y)\hat{f}(y|x,\delta _{t}=1)O(x,y;\eta )dy}{\int O(x,y;\eta )\hat{f}(y|x,\delta _{t}=1)dy} \nonumber \\&\cdot \frac{\int \hat{f}(y|x,\delta _{t}=1)\partial O(x,y;\eta )/ \partial \eta ^{T} dy}{\int O(x,y;\eta )\hat{f}(y|x,\delta _{t}=1)dy}\,. \end{aligned}$$
(A10)

By \(\partial O(x,y_{t};\eta )/ \partial \eta ^{T} = - (\partial \pi (x,y_{t};\eta )/ \partial \eta ^{T}) / \pi ^{2}(x,y_{t};\eta ) = - O(x,y_{t};\eta )z(x,y_{t};\eta )\), we obtain

$$\begin{aligned}&\frac{\partial E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]}{\partial \eta ^{T}} = E[\dot{s}(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0] \nonumber \\&\quad - E[s(\eta ;\delta _{t},x,Y_{t})z^{T}(x,Y_{t};\eta ) |x,\delta _{t}=0]\nonumber \\&\quad + E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\cdot E[z^{T}(x,Y_{t};\eta ) |x,\delta _{t}=0] \,. \end{aligned}$$
(A11)

Combining equations (A8) and (A11), we have

$$\begin{aligned} E\bigg (\frac{\partial s(\eta )}{\partial \eta ^{T}} \bigg )=&E \bigg \{\sum \limits _{t=2}^{T}\Big \{ \delta _{t} \dot{s}(\eta ;\delta _{t},x,y_{t}) + (1-\delta _{t})E[\dot{s}(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\nonumber \\&- (1-\delta _{t})E[s(\eta ;\delta _{t},x,Y_{t})z^{T}(x,Y_{t};\eta ) |x,\delta _{t}=0] \nonumber \\&+ (1-\delta _{t})E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\cdot E[z^{T}(x,Y_{t};\eta ) |x,\delta _{t}=0] \Big \}\bigg \}\nonumber \\ =&\, E \Big \{ \sum \limits _{t=2}^{T}\big \{\delta _{t} \dot{s}(\eta ;\delta _{t},x,y_{t}) + (1-\delta _{t})E[\dot{s}(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\big \}\Big \}\nonumber \\&- E \Big \{\sum \limits _{t=2}^{T}(1-\delta _{t})E[s(\eta ;\delta _{t},x,Y_{t})z^{T}(x,Y_{t};\eta ) |x,\delta _{t}=0] \Big \}\nonumber \\&+ E \Big \{\sum \limits _{t=2}^{T}(1-\delta _{t})E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\cdot E[z^{T}(x,Y_{t};\eta ) |x,\delta _{t}=0] \Big \} \,. \end{aligned}$$
(A12)

Since

$$\begin{aligned}&E \Big \{ \sum \limits _{t=2}^{T}\big \{\delta _{t} \dot{s}(\eta ;\delta _{t},x,y_{t}) + (1-\delta _{t})E[\dot{s}(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\big \}\Big \} \nonumber \\&\quad = E \Big \{ \sum \limits _{t=2}^{T}\big \{ \pi (x,y_{t};\eta ) \dot{s}(\eta ;\delta _{t},x,y_{t}) + (1-\pi (x,y_{t};\eta ))\dot{s}(\eta ;\delta _{t},x,y_{t})\big \}\Big \}\nonumber \\&\quad = E \Big [\sum \limits _{t=2}^{T}\dot{s}(\eta ;\delta _{t},x,y_{t})\Big ] \end{aligned}$$
(A13)

and

$$\begin{aligned}&E \Big \{\sum \limits _{t=2}^{T}(1-\delta _{t})E[s(\eta ;\delta _{t},x,Y_{t})z^{T}(x,Y_{t};\eta ) |x,\delta _{t}=0]\Big \}\nonumber \\&\quad = - E \Big \{\sum \limits _{t=2}^{T}(1-\delta _{t})E[\pi (x,Y_{t};\eta )z(x,Y_{t};\eta ) z^{T}(x,Y_{t};\eta )|x]\Big \}\nonumber \\&\quad = - E \Big \{E\big [\sum \limits _{t=2}^{T}(1-\pi (x,Y_{t};\eta ))\pi (x,Y_{t};\eta )z(x,Y_{t};\eta ) z^{T}(x,Y_{t};\eta )|x\big ]\Big \}\nonumber \\&\quad = - E\Big [\sum \limits _{t=2}^{T}z(x,Y_{t};\eta ) \partial \pi (x,y_{t};\eta ))/ \partial \eta ^{T}\Big ]\nonumber \\&\quad = E \Big [\sum \limits _{t=2}^{T}\dot{s}(\eta ;\delta _{t},x,y_{t})\Big ] \,, \end{aligned}$$
(A14)

we then have

$$\begin{aligned} E\bigg (\frac{\partial s(\eta )}{\partial \eta ^{T}} \bigg ) =&E \Big \{\sum \limits _{t=2}^{T}(1-\delta _{t})E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\cdot E[z^{T}(x,Y_{t};\eta ) |x,\delta _{t}=0] \Big \} \,. \end{aligned}$$
(A15)

Let \(\mathcal {I}_{11}(\eta )= - E\big (\partial s(\eta )/ \partial \eta ^{T} \big )\). Since \(\widehat{\eta }\) is the solution to the mean score equation \(\bar{S}(\eta )=0\) in (3.3), we have

$$\begin{aligned} \sqrt{n}\left( \widehat{\eta }-\eta _{0} \right) \xrightarrow {\ d\ }N\left( 0, \mathcal {I}^{-1}_{11}(\eta _{0}) \right) \,, \end{aligned}$$
(A16)

where

$$\begin{aligned} \mathcal {I}^{-1}_{11}(\eta _{0}) =&-\bigg \{E\Big [\sum \limits _{t=2}^{T}(1-\delta _{t})E[s(\eta _{0};\delta _{t},x,Y_{t})|x,\delta _{t}=0]E[z^{T}(x,Y_{t};\eta _{0})|x,\delta _{t}=0]\Big ]\bigg \}^{-1} \nonumber \\ =&-\bigg \{E\Big [\sum \limits _{t=2}^{T}(1-\delta _{t})\bar{s}_{0}(\eta _0;x)\bar{z}_{0}(\eta _0;x)\Big ]\bigg \}^{-1} \,, \end{aligned}$$
(A17)

\(\bar{s}_{0}(\eta ;x)=E[s(\eta ;\delta _{t},x,Y_{t})|x,\delta _{t}=0]\) and \(\bar{z}_{0}(\eta ;x)=E[z^{T}(x,Y_{t};\eta )|x,\delta _{t}=0]\), completing the proof of Theorem 2. \(\square \)

Proof of Theorem 3

Since \(\widehat{\psi } = (\widehat{\eta }, \widehat{\theta }_{PS})\) is the solution to

$$\begin{aligned} \left( \begin{array}{c} \bar{S}(\eta )=0\\ U_{PS}(\theta ; \eta )=0 \end{array}\right) =\left( \begin{array}{c} 0\\ 0 \end{array} \right) \,, \end{aligned}$$
(A18)

the variance of \(\widehat{\psi } = (\widehat{\eta }, \widehat{\theta }_{PS})\) can be obtained by

$$\begin{aligned} \mathrm{var}\left\{ \sqrt{n}\left( \begin{array}{c} \widehat{\eta }-\eta _{0}\\ \widehat{\theta }_{PS}-\theta _{0} \end{array}\right) \right\} = \mathcal {I}^{-1} \mathrm{var}\left\{ \begin{array}{c} s(\eta _{0})\\ u(\theta _{0}; \eta _{0}) \end{array}\right\} \mathcal {I}^{-T} \,, \end{aligned}$$
(A19)

where \(\mathcal {I}=\mathcal {I}(\theta _{0}, \eta _{0})\) and

$$\begin{aligned} \mathcal {I}(\theta , \eta ) = \left( \begin{array}{cc} \mathcal {I}_{11}(\eta )&{} 0\\ \mathcal {I}_{21}(\theta ,\eta )&{} \mathcal {I}_{22}(\theta ,\eta ) \end{array}\right) = -\left\{ \begin{array}{cc} E\big (\frac{\partial s(\eta )}{\partial \eta ^{T}}\big )&{} E\big (\frac{\partial s(\eta )}{\partial \theta ^{T}}\big )\\ E\big (\frac{\partial u(\theta ; \eta )}{\partial \eta ^{T}}\big ) &{} E\big (\frac{\partial u(\theta ; \eta )}{\partial \theta ^{T}}\big ) \end{array}\right\} \,. \end{aligned}$$
(A20)

Further, we have

$$\begin{aligned} \mathcal {I}^{-1}= \left( \begin{array}{cc} \mathcal {I}^{-1}_{11}&{} 0\\ -\mathcal {I}^{-1}_{22}\mathcal {I}_{21}\mathcal {I}^{-1}_{11}&{} \mathcal {I}^{-1}_{22} \end{array}\right) \,, \end{aligned}$$
(A21)

where \(\mathcal {I}_{11} = \mathcal {I}_{11}(\eta _{0})\), \(\mathcal {I}_{22} = \mathcal {I}_{22}(\theta _{0}, \eta _{0})\), \(\mathcal {I}_{21} = \mathcal {I}_{21}(\theta _{0}, \eta _{0})\). Combining equations (A19) and (A21), we have

$$\begin{aligned} \Sigma _{\theta } =&\mathrm{var}(\sqrt{n}(\widehat{\theta }_{PS}-\theta _{0}))= \mathrm{var}\big \{\mathcal {I}^{-1}_{22}[u(\theta _{0}; \eta _{0})-\mathcal {I}_{21}\mathcal {I}^{-1}_{11}s(\eta _{0})]\big \}\nonumber \\ =&\mathcal {I}^{-1}_{22} \mathrm{var}\big [u(\theta _{0}; \eta _{0})-\mathcal {I}_{21}\mathcal {I}^{-1}_{11}s(\eta _{0})\big ] \mathcal {I}^{-T}_{22} \,. \end{aligned}$$
(A22)

It follows that

$$\begin{aligned} \sqrt{n}\left( \widehat{\theta }_{PS}-\theta _{0} \right) \xrightarrow {\ d\ }N\left( 0, \Sigma _{\theta } \right) \,, \end{aligned}$$
(A23)

as \(n \rightarrow \infty \), where

$$\begin{aligned} \Sigma _{\theta }= \mathcal {I}^{-1}_{22} \mathrm{var}[u(\theta _{0}; \eta _{0})- \mathcal {I}_{21}\mathcal {I}^{-1}_{11}s(\eta _{0})]\mathcal {I}^{-T}_{22}\,. \end{aligned}$$

That is, Theorem 3 holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yau, C.Y. A propensity score adjustment method for longitudinal time series models under nonignorable nonresponse. Stat Papers 63, 317–342 (2022). https://doi.org/10.1007/s00362-021-01261-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-021-01261-0

Keywords

Navigation