Skip to main content
Log in

Exact and asymptotic tests of exponentiality against nonmonotonic mean time to failure type alternatives

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The performance and effectiveness of an age replacement policy can be assessed by its mean time to failure (MTTF) function. In this paper we propose a class of tests to detect trend change in MTTF function. We develop test statistics utilising a measure of deviation based on a weighted integral approach. We derive the exact and asymptotic distributions of our test statistics exploiting L-statistic theory and also establish the consistency of the test as a consequence of our results. A Monte Carlo study is conducted to evaluate the performance of the proposed test. Finally, we apply our test to some real life data sets for illustrative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarset MV (1987) How to identify a bathtub hazard rate. IEEE Trans Reliab 36(1):106–108

    MATH  Google Scholar 

  • Anis M (2014) Tests of non-monotonic stochastic aging notions in reliability theory. Stat Pap 55(3):691–714

    MathSciNet  MATH  Google Scholar 

  • Anis M, Mitra M (2011) A generalized Hollander-Proschan type test for NBUE alternatives. Stat Probab Lett 81(1):126–132

    MathSciNet  MATH  Google Scholar 

  • Asha G, Nair U (2010) Reliability properties of mean time to failure in age replacement models. Int J Reliab Qual Saf Eng 17(01):15–26

    Google Scholar 

  • Barlow RE (1979) Geometry of the total time on test transform. Nav Res Logist Q 26(3):393–402

    MathSciNet  MATH  Google Scholar 

  • Barlow RE, Proschan F (1965) Mathematical theory of reliability. Wiley, New York

    MATH  Google Scholar 

  • Belzunce F, Pinar J, Ruiz J (2005) On testing the dilation order and HNBUE alternatives. Ann Inst Stat Math 57(4):803

    MathSciNet  MATH  Google Scholar 

  • Belzunce F, Ortega EM, Ruiz JM (2007) On non-monotonic ageing properties from the Laplace transform, with actuarial applications. Insur Math Econ 40(1):1–14

    MathSciNet  MATH  Google Scholar 

  • Bergman B, Klefsjö B (1989) A family of test statistics for detecting monotone mean residual life. J Stat Plan Inference 21(2):161–178

    MathSciNet  MATH  Google Scholar 

  • Bhattacharyya D, Khan RA, Mitra M (2020a) A test of exponentiality against DMTTF alternatives via L-statistics. Stat Probab Lett 165:108853

    MathSciNet  MATH  Google Scholar 

  • Bhattacharyya D, Ghosh S, Mitra M (2020b) On a non-monotonic ageing class based on the failure rate average. Commun Stat. https://doi.org/10.1080/03610926.2020.1824273

  • Bhattacharyya D, Khan RA, Mitra M (2021) Two-sample nonparametric test for comparing mean time to failure functions in age replacement. J Stat Plan Inference 212:34–44

    MathSciNet  MATH  Google Scholar 

  • Bhatti FA, Hamedani G, Najibi SM, Ahmad M (2019) On the extended Chen distribution: development, properties, characterizations and applications. Ann Data Sci 1–22

  • Bickel P, Doksum K (1969) Test for monotone failure rate based on normalized spacing. Ann Math Stat 40:1216–1235

    MathSciNet  MATH  Google Scholar 

  • Boos D (1979) A differential for L-statistics. Ann Stat 7:955–959

    MathSciNet  MATH  Google Scholar 

  • Boos DD (1977) The differential approach in statistical theory and robust inference. Ph.D. dissertation, Florida State University

  • Box GE (1954) Some theorems on quadratic forms applied in the study of analysis of variance problems, i. effect of inequality of variance in the one-way classification. Ann Math Stat 25(2):290–302

    MathSciNet  MATH  Google Scholar 

  • Chhikara RS, Folks JL (1977) The inverse Gaussian distribution as a lifetime model. Technometrics 19(4):461–468

    MATH  Google Scholar 

  • Diab L (2010) Testing for NBUL using goodness of fit approach with applications. Stat Pap 51(1):27

    MathSciNet  MATH  Google Scholar 

  • El-Gohary A, Alshamrani A, Al-Otaibi AN (2013) The generalized Gompertz distribution. Appl Math Model 37(1–2):13–24

    MathSciNet  MATH  Google Scholar 

  • Glaser RE (1980) Bathtub and related failure rate characterizations. J Am Stat Assoc 75(371):667–672

    MathSciNet  MATH  Google Scholar 

  • Guess F, Hollander M, Proschan F (1986) Testing exponentiality versus a trend change in mean residual life. Ann Stat 14(4):1388–1398

    MathSciNet  MATH  Google Scholar 

  • Henze N, Meintanis SG (2005) Recent and classical tests for exponentiality: a partial review with comparisons. Metrika 61(1):29–45

    MathSciNet  MATH  Google Scholar 

  • Hjorth U (1980) A reliability distribution with increasing, decreasing, constant and bathtub-shaped failure rates. Technometrics 22(1):99–107

    MathSciNet  MATH  Google Scholar 

  • Hollander M, Proschan F (1975) Tests for the mean residual life. Biometrika 62(3):585–593

    MathSciNet  MATH  Google Scholar 

  • Izadi M, Fathimanesh S (2019) Testing exponentiality against a trend change in mean time to failure in age replacement. Commun Stat Theory Methods 1–13

  • Izadi M, Sharafi M, Khaledi BE (2018) New nonparametric classes of distributions in terms of mean time to failure in age replacement. J Appl Prob 55(4):1238–1248

    MathSciNet  MATH  Google Scholar 

  • Kattumannil SK, Anisha P (2019) A simple non-parametric test for decreasing mean time to failure. Stat Pap 60:73–87

    MathSciNet  MATH  Google Scholar 

  • Kayid M, Ahmad I, Izadkhah S, Abouammoh A (2013) Further results involving the mean time to failure order, and the decreasing mean time to failure class. IEEE Trans Reliab 62(3):670–678

    Google Scholar 

  • Khan RA, Bhattacharyya D, Mitra M (2020) A change point estimation problem related to age replacement policies. Oper Res Lett 48(2):105–108. https://doi.org/10.1016/j.orl.2019.12.005

    Article  MathSciNet  MATH  Google Scholar 

  • Khan RA, Bhattacharyya D, Mitra M (2021) On classes of life distributions based on the mean time to failure function. J Appl Prob 58(2)

  • Klefsjö B (1982) On aging properties and total time on test transforms. Scand J Stat 9:37–41

    MathSciNet  Google Scholar 

  • Klefsjö B (1989) Testing against a change in the nbue property. Microelectron Reliab 29(4):559–570

    Google Scholar 

  • Knopik L (2005) Some results on the ageing class. Control Cybern 34:1175–1180

    MathSciNet  MATH  Google Scholar 

  • Knopik L (2006) Characterization of a class of lifetime distributions. Control Cybern 35:407–414

    MathSciNet  MATH  Google Scholar 

  • Lai CD, Xie M (2006) Stochastic ageing and dependence for reliability. Springer, New York

    MATH  Google Scholar 

  • Langenberg P, Srinivasan R (1979) Null distribution of the Hollander-Proschan statistic for decreasing mean residual life. Biometrika 66(3):679–680

    Google Scholar 

  • Lemonte AJ (2013) A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function. Comput Stat Data An 62:149–170

    MathSciNet  MATH  Google Scholar 

  • Li X, Xu M (2008) Reversed hazard rate order of equilibrium distributions and a related aging notion. Stat Pap 49(4):749–767

    MathSciNet  MATH  Google Scholar 

  • Majumder P, Mitra M (2017) A test for detecting Laplace order dominance and related Bahadur efficiency issues. Stat Pap 60:1921–1937. https://doi.org/10.1007/s00362-017-0901-0

    Article  MathSciNet  MATH  Google Scholar 

  • Majumder P, Mitra M (2019) Detecting trend change in hazard functions-an L-statistic approach. Stat Pap. https://doi.org/10.1007/s00362-018-01074-8

    Article  Google Scholar 

  • Mitra M, Basu SK (1994) On a nonparametric family of life distributions and its dual. J Stat Plan Inference 39(3):385–397

    MathSciNet  MATH  Google Scholar 

  • Park DH (1988) Testing whether failure rate changes its trend. IEEE Trans Reliab 37(4):375–378

    MATH  Google Scholar 

  • Proschan F (1963) Theoretical explanation of observed decreasing failure rate. Technometrics 5(3):375–383

    Google Scholar 

  • Sankaran P, Midhu N (2016) Testing exponentiality using mean residual quantile function. Stat Pap 57(1):235–247

    MathSciNet  MATH  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York

    MATH  Google Scholar 

  • Wang F (2000) A new model with bathtub-shaped failure rate using an additive Burr XII distribution. Reliab Eng Syst Saf 70(3):305–312

    Google Scholar 

  • Xie M, Lai CD (1996) Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab Eng Syst Saf 52(1):87–93

    Google Scholar 

  • Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub-shaped failure rate function. Reliab Eng Syst Saf 76(3):279–285

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers and the Associate Editor for their valuable comments and suggestions which have led to a substantial improvement of an earlier version of this paper. The authors are also grateful to the University Grants Commission (UGC), India and the Council of Scientific and Industrial Research (CSIR), India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhul Ali Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 2.1

Now substituting the limits of integration in (2) we have

$$\begin{aligned} S_{k,j}(F)&= \int _0^{F^{-1}(p)} \int _0^t\left[ M_F(t)-M_F(s) \right] \left( F(t)\right) ^k\left( F(s)\right) ^j dF(s)dF(t) \nonumber \\&\quad + \int _{F^{-1}(p)}^{\infty }\int _{F^{-1}(p)}^t \left[ M_F(s)-M_F(t) \right] \left( F(t)\right) ^k\left( F(s)\right) ^j dF(s)dF(t) \nonumber \\&= I_1 + I_2 . \end{aligned}$$
(13)

A lengthy and involved calculation using interchange of the order of integration and integration by parts yields

$$\begin{aligned} I_1&= \int _0^{F^{-1}(p)} \int _0^t \left[ \left( F(t)\right) ^{k-1}\left( F(s)\right) ^j\int _0^t \bar{F}(x)d x \right. \nonumber \\&\quad \left. -\left( F(s)\right) ^{j-1}\left( F(t)\right) ^k \int _0^s \bar{F}(x)d x \right] dF(s) dF(t) \nonumber \\&= \int _0^{F^{-1}(p)}\left( F(t)\right) ^{k-1} \int _0^t \bar{F}(x)d x \left( \int _0^t \left( F(s)\right) ^j dF(s) \right) dF(t) \nonumber \\&\quad - \int _0^{F^{-1}(p)} \left( F(t)\right) ^k \left( \int _0^t \left( F(s)\right) ^{j-1} \left( \int _0^s \bar{F}(x)d x \right) dF(s) \right) d F(t) \nonumber \\&= \frac{1}{j+1} \int _0^{F^{-1}(p)} \left( F(t)\right) ^{k+j} \left( \int _0^t \bar{F}(x)d x \right) dF(t) \nonumber \\&\quad - \int _0^{F^{-1}(p)} \left( F(s)\right) ^{j-1} \int _0^s \bar{F}(x)d x \left( \int _s^{F^{-1}(p)} \left( F(t)\right) ^k dF(t) \right) dF(s) \nonumber \\&= \frac{1}{j+1} \int _0^{F^{-1}(p)} \left( F(t)\right) ^{k+j} \left( \int _0^t \bar{F}(x)d x \right) dF(t) \nonumber \\&\quad - \frac{p^{k+1}}{k+1} \int _0^{F^{-1}(p)} \left( F(s)\right) ^{j-1} \left( \int _0^s \bar{F}(x)d x \right) dF(s) \nonumber \\&\quad + \frac{1}{k+1} \int _0^{F^{-1}(p)} \left( F(s)\right) ^{k+j} \left( \int _0^s \bar{F}(x)d x \right) dF(s) \nonumber \\&= \frac{p^{k+j+1}}{(k+j+1)(j+1)}\int _0^{F^{-1}(p)} \bar{F}(t)d t \nonumber \\&\quad - \frac{1}{(k+j+1)(j+1)}\int _0^{F^{-1}(p)} \bar{F}(t)\left( F(t)\right) ^{k+j+1}d t \nonumber \\&\quad - \frac{p^{k+j+1}}{j(k+1)}\int _0^{F^{-1}(p)} \bar{F}(t)d t + \frac{p^{k+1}}{j(k+1)}\int _0^{F^{-1}(p)} \bar{F}(t)\left( F(t)\right) ^{j}d t \nonumber \\&\quad + \frac{p^{k+j+1}}{(k+j+1)(k+1)}\int _0^{F^{-1}(p)} \bar{F}(t)d t \nonumber \\&\quad - \frac{1}{(k+j+1)(k+1)}\int _0^{F^{-1}(p)} \bar{F}(t)\left( F(t)\right) ^{k+j+1}d t \nonumber \\&= \left[ \frac{p^{k+j+1}}{(k+j+1)(j+1)} + \frac{p^{k+j+1}}{(k+j+1)(k+1)} - \frac{p^{k+j+1}}{j(k+1)}\right] \int _0^{F^{-1}(p)} \bar{F}(t)d t\nonumber \\&\quad + \frac{p^{k+1}}{j(k+1)}\int _0^{F^{-1}(p)} \bar{F}(t)\left( F(t)\right) ^{j}d t \nonumber \\&\quad - \left[ \frac{1}{(k+j+1)(j+1)} + \frac{1}{(k+j+1)(k+1)} \right] \int _0^{F^{-1}(p)} \bar{F}(t)\left( F(t)\right) ^{k+j+1}d t \end{aligned}$$
(14)

and

$$\begin{aligned} I_2&= \int _{F^{-1}(p)}^{\infty } \int _{F^{-1}(p)}^t \left[ \left( F(s)\right) ^{j-1}\left( F(t)\right) ^k\int _0^s \bar{F}(x)d x\right. \nonumber \\&\quad \left. -\left( F(s)\right) ^{j}\left( F(t)\right) ^{k-1} \int _0^t \bar{F}(x)d x \right] dF(s)dF(t) \nonumber \\&= \int _{F^{-1}(p)}^{\infty } \int _s^{\infty } \left( F(s)\right) ^{j-1}\left( F(t)\right) ^k \left( \int _0^s \bar{F}(x)d x \right) dF(t) dF(s) \nonumber \\&\quad - \int _{F^{-1}(p)}^{\infty } \int _{F^{-1}(p)}^t \left( F(s)\right) ^{j}\left( F(t)\right) ^{k-1} \left( \int _0^t \bar{F}(x)d x \right) dF(s)dF(t) \nonumber \\&= \int _{F^{-1}(p)}^{\infty } \left( F(s)\right) ^{j-1} \left( \int _0^t \bar{F}(x)d x \right) \nonumber \\&\quad \left( \int _s^{\infty } \left( F(t)\right) ^k dF(t) \right) dF(s) \nonumber \\&\quad - \int _{F^{-1}(p)}^{\infty } \left( F(t)\right) ^{k-1} \left( \int _0^t \bar{F}(x)d x \right) \left( \int _{F^{-1}(p)}^t \right. \nonumber \\&\quad \left. \left( F(s)\right) ^{j} dF(s) \right) dF(t) \nonumber \\&= \frac{1}{k+1} \int _{F^{-1}(p)}^{\infty } \left( F(s)\right) ^{j-1} \left( \int _0^s \bar{F}(x)d x \right) dF(s) \nonumber \\&\quad - \frac{1}{k+1} \int _{F^{-1}(p)}^{\infty } \left( F(s)\right) ^{k+j} \left( \int _0^s \bar{F}(x)d x \right) dF(s) \nonumber \\&\quad - \frac{1}{j+1} \int _{F^{-1}(p)}^{\infty } \left( F(t)\right) ^{k+j} \left( \int _0^t \bar{F}(x)d x \right) dF(t) \nonumber \\&\quad + \frac{p^{j+1}}{j+1} \int _{F^{-1}(p)}^{\infty } \left( F(t)\right) ^{k-1} \left( \int _0^t \bar{F}(x)d x \right) dF(t) \nonumber \\&\quad = \left[ \frac{1}{j(k+1)}-\frac{1}{(k+1)(k+j+1)}- \frac{1}{(j+1)(k+j+1)}\right. \nonumber \\&\quad \left. + \frac{p^{j+1}}{k(j+1)} \right] \int _0^{\infty } \bar{F}(t)d t \nonumber \\&\quad + \left[ \frac{p^{k+j+1}}{(k+1)(k+j+1)}+\frac{p^{k+j+1}}{(j+1)(k+j+1)}-\frac{p^{k+j+1}}{k(j+1)}\right. \nonumber \\&\quad \left. -\frac{p^j}{j(k+1)} \right] \int _0^{F^{-1}(p)}\bar{F}(t)d t \nonumber \\&\quad + \left[ \frac{1}{(k+1)(k+j+1)} + \frac{1}{(j+1)(k+j+1)} \right] \int _{F^{-1}(p)}^{\infty }\bar{F}(t) \left( F(t)\right) ^{k+j+1}d t \nonumber \\&\quad - \frac{p^{j+1}}{k(j+1)} \int _{F^{-1}(p)}^{\infty }\bar{F}(t) \left( F(t)\right) ^{k}d t - \frac{1}{j(k+1)}\int _{F^{-1}(p)}^{\infty }\bar{F}(t) \left( F(t)\right) ^{j}d t . \end{aligned}$$
(15)

Now using (13), (14) and (15), we get

$$\begin{aligned} S_{k,j}(F)&= \left[ \frac{1}{j(k+1)}-\frac{1}{(k+1)(k+j+1)}- \frac{1}{(j+1)(k+j+1)}\right. \nonumber \\&\quad \left. + \frac{p^{j+1}}{k(j+1)} \right] \int _0^{\infty } \bar{F}(t)d t \nonumber \\&\quad + \left[ \frac{2p^{k+j+1}}{(k+1)(k+j+1)}+\frac{2p^{k+j+1}}{(j+1)(k+j+1)}-\frac{p^{k+j+1}}{k(j+1)}-\frac{p^{k+j+1}}{j(k+1)}\right. \nonumber \\&\quad \left. -\frac{p^j}{j(k+1)} \right] \int _0^{F^{-1}(p)}\bar{F}(t)d t \nonumber \\&\quad - \left[ \frac{1}{(k+j+1)(j+1)} + \frac{1}{(k+j+1)(k+1)} \right] \int _0^{F^{-1}(p)} \bar{F}(t)\left( F(t)\right) ^{k+j+1}d t \nonumber \\&\quad + \left[ \frac{1}{(k+j+1)(j+1)} + \frac{1}{(k+j+1)(k+1)} \right] \int _{F^{-1}(p)}^{\infty } \bar{F}(t)\left( F(t)\right) ^{k+j+1}d t \nonumber \\&\quad +\frac{p^{k+1}}{j(k+1)}\int _0^{F^{-1}(p)} \bar{F}(t)\left( F(t)\right) ^j d t \nonumber \\&\quad - \frac{p^{j+1}}{k(j+1)} \int _{F^{-1}(p)}^{\infty }\bar{F}(t) \left( F(t)\right) ^{k}d t \nonumber \\&\quad - \frac{1}{j(k+1)}\int _{F^{-1}(p)}^{\infty }\bar{F}(t) \left( F(t)\right) ^{j}d t . \end{aligned}$$
(16)

\(\square \)

Proof of Proposition 2.2

Direct but somewhat lengthy calculations yield

$$\begin{aligned} \int _{F_n^{-1}(p)}^{\infty } \bar{F}_n(t) \left( F_n(t)\right) ^{\eta }d t&= \sum _{i=m+1}^n \left( 1- \frac{i-1}{n}\right) \left( \frac{i-1}{n}\right) ^{\eta } \left[ X_{(i)}-X_{(i-1)} \right] \nonumber \\&= \sum _{i=m+1}^n \left[ \left( 1- \frac{i-1}{n}\right) \left( \frac{i-1}{n}\right) ^{\eta } - \left( 1- \frac{i}{n}\right) \left( \frac{i}{n}\right) ^{\eta } \right] \nonumber \\&\quad - \left( 1- \frac{m}{n}\right) \left( \frac{m}{n}\right) ^{\eta } X_{(m)} X_{(i)} , \end{aligned}$$
(17)
$$\begin{aligned} \int _0^{F_n^{-1}(p)} \bar{F}_n(t) \left( F_n(t)\right) ^{\zeta }d t =&\sum _{i=1}^m \left( 1- \frac{i-1}{n}\right) \left( \frac{i-1}{n}\right) ^{\zeta } \left[ X_{(i)}-X_{(i-1)} \right] \nonumber \\&= \sum _{i=1}^{m-1} \left\{ \left( 1- \frac{i-1}{n}\right) \left( \frac{i-1}{n}\right) ^{\zeta } - \left( 1- \frac{i}{n}\right) \left( \frac{i}{n}\right) ^{\zeta } \right\} \Bigg ] X_{(i)} \nonumber \\&\quad +\left( 1- \frac{m-1}{n}\right) \left( \frac{m-1}{n}\right) ^{\zeta } X_{(m)} , \end{aligned}$$
(18)

and

$$\begin{aligned} \int _0^{F_n^{-1}(p)} \bar{F}(t)d t= \sum _{i=1}^m \left( 1-\frac{i-1}{n}\right) \left[ X_{(i)}-X_{(i-1)} \right] =\frac{1}{n}\sum _{i=1}^{m-1}X_{(i)}+ \left( 1-\frac{m-1}{n}\right) X_{(m)} .\nonumber \\ \end{aligned}$$
(19)

Using (17), (18), (19) and \(\int _0^{\infty } \bar{F}_n(t)d t:= \frac{1}{n}\sum _{i=1}^n X_{i} =\frac{1}{n} \sum _{i=1}^n X_{(i)}\), we get our desired result. \(\square \)

Proof of Proposition 4.1

Integrating by parts we derive the following formulae. The details are omitted for the sake of brevity. For \(\gamma ,\, \delta >0,\) we have

$$\begin{aligned}&\int _{F^{-1}(p)}^{\infty } \bar{F}(t) \left( F(t)\right) ^{\delta }d t \nonumber \\&=-(1-p)p^{\delta }F^{-1}(p)-\int _{F^{-1}(p)}^{\infty }x\left[ \delta -(1+\delta )F(x)\right] \left[ F(x) \right] ^{\delta -1} d F(x) \end{aligned}$$
(20)

and

$$\begin{aligned}&\int _0^{F^{-1}(p)} \bar{F}(t) \left( F(t)\right) ^{\gamma }d t \nonumber \\&= (1-p)p^{\gamma }F^{-1}(p)-\int _0^{F^{-1}(p)} x\left[ \gamma -(1+\gamma )F(x)\right] \left[ F(x) \right] ^{\gamma -1} d F(x) . \end{aligned}$$
(21)

Now the proof easily follows using (20) and (21). \(\square \) \(\square \)

Proof of Theorem 4.2

We apply Theorem 4.1 to obtain asymptotic normality of \(S_{k, j}(F_n)\). From (10), it is easy to verify that \(J_{k,\,j}\) is bounded and continuous a.e. Lebesgue and a.e. \(F^{-1}\). Thus, to prove this theorem it is now enough to show that \(\sigma ^2(J_{k, j},F) < \infty \). Let \(S=\left\{ (x,y): 0\le x, y <\infty \right\} \), \(S_1=\left\{ (x,y): 0\le y \le x <\infty \right\} \), \(S_2=\left\{ (x,y): 0\le x \le y <\infty \right\} \), \(B^\prime =\left\{ x: F(x) \right. \) is a discontinuity point of \(\left. J \right\} \), \(B_1=\left\{ (x,y): F(x) \right. \) and F(y) are discontinuity points of J in the region \(\left. S_1\right\} \) and \(B_2=\left\{ (x,y): F(x) \right. \) and F(y) are discontinuity points of J in the region \(\left. S_2\right\} \). Since \(B^\prime \) is a Lebesgue-null set (using the fact that J is bounded and continuous a.e. \(F^{-1}\)), it follows that

$$\begin{aligned}&\iint \limits _{S-B^\prime \times B^\prime } J_{k, j}(F(x))J_{k, j}(F(y))\left[ F(\min (x,y))-F(x)F(y)\right] d x d y \nonumber \\&\quad \le |J|^2 \iint \limits _{S-B^\prime \times B^\prime } \left[ F(\min (x,y))-F(x)F(y)\right] d x d y \nonumber \\&\quad = |J|^2 \iint \limits _{S_1-B_1} F(y) {\bar{F}}(x)d y d x + |J|^2 \iint \limits _{S_2-B_2} F(x) {\bar{F}}(y)d x d y \nonumber \\&\quad \le 2 |J|^2 \int _0^{\infty } x {\bar{F}}(x)d x = |J|^2 \int _0^{\infty }x^2 d F(x) <\infty \end{aligned}$$

and

$$\begin{aligned}&\int \limits _{[0,\infty )-B^\prime } J_{k, j}(F(x))\left[ \min (p,F(x))-p F(x)\right] d x \\&\quad \le |J| \int \limits _{[0,\infty )-B^\prime } \left[ \min (p,F(x))-p F(x)\right] d x \\&\quad \le |J| (1-p) F^{-1}(p) + p|J| \int _0^\infty {\bar{F}}(x)d x = |J| (1-p) F^{-1}(p) + p|J| \mu <\infty . \end{aligned}$$

Thus \(\sigma ^2(J_{k, j},F) < \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.A., Bhattacharyya, D. & Mitra, M. Exact and asymptotic tests of exponentiality against nonmonotonic mean time to failure type alternatives. Stat Papers 62, 3015–3045 (2021). https://doi.org/10.1007/s00362-021-01226-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-021-01226-3

Keywords

Mathematics Subject Classification

Navigation