Skip to main content
Log in

Estimation for functional linear semiparametric model

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We study a functional linear semiparametric model which is not only an extension of partially functional linear models, but also an extension of semiparametric models. We consider the case that a response is related to a functional predictor and several scalar variables and the functional predictor is observed at a set of discrete points with noise. We propose a new estimation procedure which combines functional principal component analysis and B-spline methods to estimate unknown parameters and functions in model. The asymptotic distribution of the estimators of slope parameters is derived and the global convergence rate of the estimator of unknown slope function is established. The convergence rate of the mean squared prediction error for a predictor is also established. Simulation studies are conducted to investigate the finite sample performance of the proposed estimators. A real data example based on real estate data is used to illustrate our proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cai T, Hall P (2006) Predictionin functional linear regression. Ann Stat 34:2159–2179

    MATH  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (2003) Spline estimators for the functional linear model. Stat Sin 13:571–591

    MathSciNet  MATH  Google Scholar 

  • Cardot H, Mas A, Sarda P (2007) CLT in functional linear models. Probab Theory Relat Fields 138:325–361

    Article  MathSciNet  Google Scholar 

  • Carroll R, Fan J, Gijbels I, Wand M (1997) Generalized partially linear single-index models. J Am Stat Assoc 92:477–489

    Article  MathSciNet  Google Scholar 

  • Chen D, Hall P, Müller H (2011) Single and multiple index functional regression models with nonparametric link. Ann Stat 39:1720–1747

    MathSciNet  MATH  Google Scholar 

  • Chen K, Jin Z (2006) Partial linear regression models for clustered data. J Am Stat Assoc 101:195–204

    Article  MathSciNet  Google Scholar 

  • Chen K, Müller H-G (2012) Conditional quantile analysis when covariates are functions, with application to growth data. J R Stat Soc B 74:67–89

    Article  MathSciNet  Google Scholar 

  • de Boor C (1978) A practical guide to splines. Springer, New York

    Book  Google Scholar 

  • Gao J, Lu Z, Tjøstheim D (2006) Estimation in semiparametric spatial regression. Ann Stat 34:1395–1435

    Article  MathSciNet  Google Scholar 

  • Gócki T, Krzyśko M, Waszak L, Wolyński W (2018) Selected statistical methods of data analysis for multivariate functional data. Stat Pap 59:153–182

    Article  MathSciNet  Google Scholar 

  • Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35:70–91

    MathSciNet  MATH  Google Scholar 

  • Hall P, Müller H, Wang J (2006) Properties of principal component methods for functional and longitudinal data analysis. Ann Stat 34:1493–1517

    MathSciNet  MATH  Google Scholar 

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, New York

    Book  Google Scholar 

  • Kato K (2012) Estimation in functional linear quantile regression. Ann Stat 40:3108–3136

    Article  MathSciNet  Google Scholar 

  • Li Y, Hsing T (2010) Uniform convergence rates for nonparametric regression and principal component analysis in functional/logitudinal data. Ann Stat 38:3321–3351

    MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New York

    Book  Google Scholar 

  • Reiss P, Ogden R (2010) Functional generalized linear models with images as predictors. Biometrics 66:61–69

    Article  MathSciNet  Google Scholar 

  • Schumaker LL (1981) Spline functions: basic theory. Wiley, New York

    MATH  Google Scholar 

  • Shin H (2009) Partial functional linear regression. J Stat Plan Inference 139:3405–3418

    Article  MathSciNet  Google Scholar 

  • Shin H, Lee MH (2012) On prediction rate in partial functional linear regression. J Multianal 103:93–106

    MathSciNet  MATH  Google Scholar 

  • Stone C (1985) Additive regression and other nonparametric models. Ann Stat 13:689–705

    Article  MathSciNet  Google Scholar 

  • Tang Q (2013) B-spline estimation for semiparametric varying-coefficient partially linear regression with spatial data. J Nonparametr Stat 25:361–378

    Article  MathSciNet  Google Scholar 

  • Tang Q (2015) Estimation for semi-functional linear regression. Statistics 49:1262–1278

    Article  MathSciNet  Google Scholar 

  • Tang Q, Cheng L (2014) Partial functional linear quantile regression. Sci China Math 57(12):2589–2608

    Article  MathSciNet  Google Scholar 

  • Wang G, Zhou J, Wu W, Chen M (2017) Robust functional sliced inverse regression. Stat Pap 58:227–245

    Article  MathSciNet  Google Scholar 

  • Yao F, Müller H, Wang J (2005) Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100:577–590

    Article  MathSciNet  Google Scholar 

  • Yao F, Sue-Chee S, Wang F (2017) Regularized partially functional quantile regression. J Multivar Anal 156:39–56

    Article  MathSciNet  Google Scholar 

  • Zhang J, Chen J (2007) Statistical inferences for functional data. Ann Stat 35:1052–1079

    MathSciNet  MATH  Google Scholar 

  • Zhou S, Shen X, Wolfe DA (1998) Local asymptotics for regression splines and confidence regions. Ann Stat 26:1760–1782

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the Editor and two reviewers for their helpful comments and suggestions that led to substantial improvements in this paper. This work was supported by National Social Science Foundation of China (16BTJ019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Qingguo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 200 KB)

Appendix: Proofs of theorems

Appendix: Proofs of theorems

Let \(C>0\) denote a generic constant of which the value may change from line to line. For a matrix \(\pmb {A}=(a_{ij})\), set \(\Vert \pmb {A}\Vert _{\infty }=\max _{i}\sum _{j}|a_{ij}|\) and \(|\pmb {A}|_{\infty }=\max _{i,j}|a_{ij}|\). For a vector \(\pmb {v}=(v_{1},\ldots ,v_{k})^{T}\), set \(\Vert \pmb {v}\Vert _{\infty }=\sum _{j=1}^{k}|v_{j}|\) and \(|\pmb {v}|_{\infty }=\max _{1\le j\le k}|v_{j}|\).

Denote \(A_{l}=\sum _{j=1}^{\infty }a_{j}\xi _{lj}\), \({\tilde{A}}_{i}=A_{i}-\frac{1}{n}\sum _{l=1}^{n}A_{l}{\tilde{\zeta }}_{li}\), \(F_{i}=f(U_{i})\), \({\tilde{F}}_{i}=F_{i}-\frac{1}{n}\sum _{l=1}^{n}F_{l}{\tilde{\zeta }}_{li}\), \({\tilde{\varepsilon }}_{i}=\varepsilon _{i}-\frac{1}{n}\sum _{l=1}^{n}\varepsilon _{l}{\tilde{\zeta }}_{li}\) and \(\tilde{\pmb {A}}=({\tilde{A}}_{1},\ldots ,{\tilde{A}}_{n})^{T}\), \(\tilde{\pmb {F}}=({\tilde{F}}_{1},\ldots ,{\tilde{F}}_{n})^{T}\), \(\tilde{\pmb {\varepsilon }}=({\tilde{\varepsilon }}_{1},\ldots ,{\tilde{\varepsilon }}_{n})^{T}\).

We first list the following Lemmas A.1A.8, their proofs are given in supplementary material.

Lemma A.1

Let \(\Delta (s,t)={\hat{K}}(s,t)-K(s,t)\) and \(|\Vert \Delta \Vert |=(\int _{{\mathcal {T}}}\int _{{\mathcal {T}}}\Delta ^{2}(s,t)dsdt)^{1/2}\). suppose that Assumptions 13 and 6 hold, then it holds that

$$\begin{aligned} |\Vert \Delta \Vert |=O_{p}(n^{-1/2}). \end{aligned}$$

Lemma A.2

Suppose that Assumptions 13 and 6 hold, then it holds that

$$\begin{aligned} \frac{1}{n}\tilde{\pmb {Z}}^{T}\tilde{\pmb {Z}}=E(\pmb {Z}^{*}\pmb {Z}^{*T})+o_{p}(1). \end{aligned}$$

Lemma A.3

Assume that Assumptions 16 hold. Then it holds that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}{\tilde{B}}_{k}(U_{i}){\tilde{B}}_{k'}(U_{i})=E(B_{k}(U)B_{k'}(U))+o_{p}(h_{0}^{2}), \end{aligned}$$

where \(o_{p}(h_{0}^{2})\) holds uniformly for \(1\le k,k^{\prime }\le K_{n}\).

Lemma A.4

Under Assumptions 14, it holds that

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}\left[ a_{j}-\frac{1}{{\hat{\lambda }}_{j}}\left( \frac{1}{n}\sum _{l=1}^{n}A_{l}{\hat{\xi }}_{lj}\right) \right] ^{2}=O_{p}(n^{-1}\lambda _{m}^{-1}m). \end{aligned}$$

Lemma A.5

Under Assumptions 13, it holds that

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-1}\left( \sum _{i=1}^{n}\xi _{ij}{\tilde{Z}}_{ik}\right) ^{2}=O_{p}(n\lambda _{m}^{-1}m^{2}+nm^{4}\log m). \end{aligned}$$

Lemma A.6

Under the Assumptions 14 and 6, it holds that

$$\begin{aligned} n^{-1/2}\left| \sum _{j=1}^{m}\frac{1}{{\hat{\lambda }}_{j}}\left( \frac{1}{n}\sum _{l=1}^{n}A_{l}{\hat{\xi }}_{lj}\right) \sum _{i=1}^{n}({\hat{\xi }}_{ij}-\xi _{ij}){\tilde{Z}}_{ik}\right| =o_{p}(1). \end{aligned}$$

Lemma A.7

Under the Assumptions 14 and 6, it holds that

$$\begin{aligned} n^{-1/2}\left| \sum _{i=1}^{n}{\tilde{A}}_{i}{\tilde{Z}}_{ik}\right| =o_{p}(1). \end{aligned}$$

Lemma A.8

Define \({\check{a}}_{j}=\frac{1}{{\hat{\lambda }}_{j} }E[(Y-Z^{T}\beta _{0}-f(U))\xi _{j}]\). Under the assumptions of Theorem 3.2, it holds that

$$\begin{aligned} \sum _{j=1}^{m}\left( {\hat{a}}_{j}-{\check{a}}_{j})^{2}=O_{p}(n^{-1}m\lambda _{m}^{-1} +n^{-2}m\lambda _{m}^{-2}\sum _{j=1}^{m}a_{j}^{2}\lambda _{j}^{-2}j^{3}+m\lambda _{m}^{-2}\left( h_{N}^{2r}+\frac{1}{Nh_{N}}\right) \right) . \end{aligned}$$

Proof of Theorem 3.1

Under Assumption 5, according to Corollary 6.21 of (Schumaker 1981, p.227), there exists a spline function \(f_{0}(u)=\sum _{k=1}^{K_{n}}b_{0k}B_{k}(u)\) and a constant \(C>0\) such that

$$\begin{aligned} \sup _{u\in [U_{0},U^{0}]}|{\bar{f}}(u)|\le Ch_{0}^{\rho '}, \end{aligned}$$
(6.1)

where \({\bar{f}}(u)=f(u)-f_{0}(u)\). Denote \({\bar{F}}_{i}={\bar{f}}(U_{i})\), \(\tilde{{\bar{F}}}_{i}={\bar{F}}_{i}-\frac{1}{n}\sum _{l=1}^{n}{\bar{F}}_{l}{\tilde{\xi }}_{li}\), \(\tilde{\bar{\pmb {F}}}=(\tilde{{\bar{F}}}_{1},\ldots ,\tilde{{\bar{F}}}_{n})^{T}\). By (2.14), we have

$$\begin{aligned} \hat{\pmb {\beta }}-\pmb {\beta }_{0}=(\tilde{\pmb {Z}}^{T}\tilde{\pmb {Z}}-\tilde{\pmb {Z}}^{T}\tilde{\pmb {B}}(\tilde{\pmb {B}}^{T}\tilde{\pmb {B}})^{-1}\tilde{\pmb {B}}^{T}\tilde{\pmb {Z}})^{-1} \tilde{\pmb {Z}}^{T}(\pmb {I}_{n}-\tilde{\pmb {B}}(\tilde{\pmb {B}}^{T}\tilde{\pmb {B}})^{-1}\tilde{\pmb {B}}^{T})(\tilde{\pmb {A}}+\tilde{\bar{\pmb {F}}}+\tilde{\pmb {\varepsilon }}), \nonumber \\\end{aligned}$$
(6.2)

where \(\pmb {I}_{n}\) is the \(n\times n\) identity matrix. By arguments similar to those used in the proof of Lemma 1 of Tang (2013) and using Lemmas A.2 and A.3, we have

$$\begin{aligned} \frac{1}{n}(\tilde{\pmb {Z}}^{T}\tilde{\pmb {Z}}-\tilde{\pmb {Z}}^{T}\tilde{\pmb {B}}(\tilde{\pmb {B}}^{T}\tilde{\pmb {B}})^{-1}\tilde{\pmb {B}}^{T}\tilde{\pmb {Z}})=\pmb {\Sigma }_{n}+o_{p}(1). \end{aligned}$$
(6.3)

Similar to the proof of Lemma A.7, we have that \(n^{-1/2}|\sum _{i=1}^{n}{\tilde{A}}_{i}{\tilde{B}}_{k}(U_{i})|=o_{p}(h_{0})\) uniformly for \(1\le k\le K_{n}\). Hence by arguments similar to those used in the proof of Lemma 1 of Tang (2013), we obtain that

$$\begin{aligned} \begin{array}{ll} n^{-\frac{1}{2}}|\tilde{\pmb {Z}}^{T}\tilde{\pmb {B}}(\tilde{\pmb {B}}^{T}\tilde{\pmb {B}})^{-1}\tilde{\pmb {B}}^{T}\tilde{\pmb {A}}|_{\infty } &{} \le K_{n}\Vert \frac{1}{n}\tilde{\pmb {Z}}^{T}\tilde{\pmb {B}}\Vert _{\infty }\Vert (\frac{K_{n}}{n}\tilde{\pmb {B}}^{T}\tilde{\pmb {B}})^{-1}\Vert _{\infty }|n^{-\frac{1}{2}}\tilde{\pmb {B}}^{T}\tilde{\pmb {A}}|_{\infty } \\ &{} =K_{n}O_{p}(1)O_{p}(1)o_{p}(h_{0})=o_{p}(1) \end{array} \nonumber \\\end{aligned}$$
(6.4)

Using Lemma A.7 and (6.4), we deduce that

$$\begin{aligned} n^{-\frac{1}{2}}\tilde{\pmb {Z}}^{T}(\pmb {I}_{n}-\tilde{\pmb {B}}(\tilde{\pmb {B}}^{T}\tilde{\pmb {B}})^{-1}\tilde{\pmb {B}}^{T})\tilde{\pmb {A}}=o_{p}(1) \end{aligned}$$
(6.5)

By Lemma A.2, we get that \(\sum _{i=1}^{n}{\tilde{Z}}_{ik}^{2}=O_{p}(n)\). Using (6.1) and the assumption that \(nh_{0}^{2\rho '}\rightarrow 0\), we have

$$\begin{aligned} n^{-1}\left( \sum _{i=1}^{n}{\tilde{Z}}_{ik}{\bar{F}}_{i}\right) ^{2}\le n^{-1}\left( \sum _{i=1}^{n}{\bar{F}}_{i}^{2}\right) \left( \sum _{i=1}^{n}{\tilde{Z}}_{ik}^{2}\right) =o_{p}(1). \end{aligned}$$

By arguments similar to those used to prove Lemmas A.5 and A.6 and using (6.1), we deduce that \(n^{-\frac{1}{2}}\sum _{i=1}^{n}\left( \frac{1}{n}\sum _{l=1}^{n}{\bar{F}}_{l}{\tilde{\xi }}_{li}\right) {\tilde{Z}}_{ik}=o_{p}(1)\) and

$$\begin{aligned} n^{-\frac{1}{2}}\sum _{i=1}^{n}(\frac{1}{n}\sum _{l=1}^{n}\varepsilon _{l}{\tilde{\xi }}_{li}){\tilde{Z}}_{ik}=o_{p}(1). \end{aligned}$$
(6.6)

Hence \(n^{-\frac{1}{2}}\sum _{i=1}^{n}{\tilde{Z}}_{ik}\tilde{{\bar{F}}}_{i}=o_{p}(1)\). By arguments similar to those used to prove (6.5), we further get that

$$\begin{aligned} n^{-\frac{1}{2}}\tilde{\pmb {Z}}^{T}(\pmb {I}_{n}-\tilde{\pmb {B}}(\tilde{\pmb {B}}^{T}\tilde{\pmb {B}})^{-1}\tilde{\pmb {B}}^{T})\tilde{\bar{\pmb {F}}}=o_{p}(1) \end{aligned}$$
(6.7)

We decompose \(\sum _{i=1}^{n}{\tilde{Z}}_{ik}\varepsilon _{i}\) into three terms as

$$\begin{aligned} \sum _{i=1}^{n}{\tilde{Z}}_{ik}\varepsilon _{i}= & {} \sum _{i=1}^{n}\varepsilon _{i}\left( Z_{ik}-\sum _{j=1}^{m}\frac{E(Z_{lk}\xi _{j})}{\lambda _{j}}\xi _{ij}\right) \\&-\,\sum _{i=1}^{n}\varepsilon _{i}\sum _{j=1}^{m}\frac{\xi _{ij}}{\lambda _{j}}\left( \frac{1}{n}\sum _{l=1}^{n}Z_{lk}\xi _{lj}-E(Z_{lk}\xi _{j})\right) \\&-\,\sum _{i=1}^{n}\varepsilon _{i}\frac{1}{n}\sum _{l=1}^{n}Z_{lk}(\tilde{\zeta }_{li}-\vec {\zeta }_{li}). \end{aligned}$$

Similar to the proof of Lemma A.6, we have \(\sum _{i=1}^{n}\varepsilon _{i} \frac{1}{n}\sum _{l=1}^{n}Z_{lk}({\tilde{\zeta }}_{li}-\vec {\zeta }_{li})=o_{p}(n)\). Since

$$\begin{aligned} \sum _{i=1}^{n}\varepsilon _{i}\left( Z_{ik}-\sum _{j=1}^{m}\frac{E(Z_{lk}\xi _{j} )}{\lambda _{j}}\xi _{ij}\right) =\sum _{i=1}^{n}\varepsilon _{i}Z_{ik}^{*}+\sum _{i=1} ^{n}\varepsilon _{i}\sum _{j=m+1}^{\infty }\mu _{kj}\xi _{ij}, \end{aligned}$$

\(\sum _{i=1}^{n}\varepsilon _{i}\sum _{j=1}^{m}\frac{\xi _{ij}}{\lambda _{j} }(\frac{1}{n}\sum _{l=1}^{n}Z_{lk}\xi _{lj}-E(Z_{lk}\xi _{j}))=o_{p}(n)\) and \(\sum _{i=1}^{n}\varepsilon _{i}\sum _{j=m+1}^{\infty }\mu _{kj}\xi _{ij} =o_{p}(n)\), then it follows by (6.6) that

$$\begin{aligned} n^{-\frac{1}{2}}\sum _{i=1}^{n}{\tilde{Z}}_{ik}{\tilde{\varepsilon }}_{i}=n^{-\frac{1}{2}}\sum _{i=1}^{n}Z_{ik}^{*}\varepsilon _{i}+o_{p}(1). \end{aligned}$$
(6.8)

By arguments similar to those used in the proof of Lemma 2 of Tang (2013), we deduce that

$$\begin{aligned} n^{-\frac{1}{2}}\tilde{\pmb {Z}}^{T}\tilde{\pmb {B}}(\tilde{\pmb {B}}^{T}\tilde{\pmb {B}})^{-1}\tilde{\pmb {B}}^{T}\tilde{\pmb {\varepsilon }} =n^{-\frac{1}{2}}\pmb {\Upsilon }_{n}\pmb {\Pi }_{n}^{-1}\pmb {B}^{T}\pmb {\varepsilon }+o_{p}(1) , \end{aligned}$$
(6.9)

where \(\pmb {B}^{T}=(\pmb {B}_{1},\ldots ,\pmb {B}_{n})\) with \(\pmb {B}_{i}=(B_{1}(U_{i}), \ldots ,B_{K_{n}}(U_{i}))^{T}\) and \(\pmb {\varepsilon }=(\varepsilon _{1},\ldots ,\varepsilon _{n})^{T}\). Now (3.1) follows from (6.2), (6.3), (6.4), (6.6)–(6.9) and the central limit theorem. The proof of Theorem 3.1 is finished.

Proof of Theorem 3.2

Note that

$$\begin{aligned}&\int _{{\mathcal {T}}}[{\hat{a}}(t)-a(t)]^{2}dt\nonumber \\&\quad \le C\left( \sum _{j=1}^{m}({\hat{a}}_{j}-{\check{a}}_{j})^{2}+\sum _{j=1}^{m}({\check{a}}_{j}-a_{j})^{2} +m\sum _{j=1}^{m}a_{j}^{2}\Vert {\hat{\phi }}_{j}-\phi _{j}\Vert ^{2} +\sum _{j=m+1}^{\infty }a_{j}^{2}\right) \nonumber \\\end{aligned}$$
(5.10)

and

$$\begin{aligned} \begin{array}{ll} \sum _{j=1}^{m}({\check{a}}_{j}-a_{j})^{2}=\sum _{j=1}^{m}\frac{({\hat{\lambda }}_{j}-\lambda _{j})^{2}}{\lambda _{j}^{2}}a_{j}^{2}[1+o_{p}(1)] =O_{p}(n^{-1}\lambda _{m}^{-1}\sum _{j=1}^{m}a_{j}^{2}\lambda _{j}^{-1}). \end{array}\nonumber \\\end{aligned}$$
(5.11)

Assumption 4 implies that \(m\sum _{j=1}^{m}a_{j}^{2}\Vert {\hat{\phi }}_{j}-\phi _{j}\Vert ^{2}=O_{p}(mn^{-1}\sum _{j=1}^{m}a_{j}^{2}j^{2}\log j)=o_{p}(m/n)\) and \(\sum _{j=m+1}^{\infty }a_{j}^{2}=O(m^{-2\gamma +1})\). Now (3.4) follows from Lemma A.8, (5.10) and (5.11). The proof of Theorem 3.2 is finished.

Proof of Theorem 3.3

By Assumption 7 and Lemma A.3, all the eigenvalues of \((\frac{K^{*}_{n}}{n}\tilde{\pmb {B}}^{*T}\tilde{\pmb {B}}^{*})^{-1}\) are bounded away from zero and infinity, except possibly on an event whose probability tends to zero. Similar to (6.1), there exists a spline function \(f^{*}(u)=\sum _{k=1}^{K^{*} _{n}}b_{0k}^{*}B_{k}^{*}(u)\) such that

$$\begin{aligned} \sup _{u\in [U_{0},U^{0}]}|f(u)-f^{*}(u)|\le Ch^{\rho '}. \end{aligned}$$
(5.12)

Let \(\pmb {b}^{*}_{0}=(b^{*}_{01},\ldots ,b^{*}_{0K^{*}_{n}})^{T}\). Using the properties of B-splines (de Boor 1978), we obtain

$$\begin{aligned} \begin{array} [c]{ll} \int _{U_{0}}^{U^{0}}({\hat{f}}(u)-f(u))^{2}du &{} \le C(\Vert \hat{\pmb {b}}-\pmb {b}^{*} _{0}\Vert ^{2}/K^{*}_{n}+h^{2\rho '}).\\ &{} \end{array} \end{aligned}$$
(5.13)

By arguments similar to those used to prove (6.4)–(6.7) and using Theorem 3.1, we conclude that \(\Vert \hat{\pmb {b}}-\pmb {b}^{*} _{0}\Vert ^{2}=O_{p}(n^{-1}{K^{*}_{n}}^{2})\). Now (3.5) follows from (5.13) and the fact that \(h=O({K^{*}_{n}}^{-1})\). This completes the proof of Theorem 3.3.

Proof of Theorem 3.4

Observe that

$$\begin{aligned} \begin{array} [c]{ll} \text{ MSPE } &{} \le 2\{\Vert {\hat{a}}\Vert ^{2}\cdot \Vert {\hat{X}}_{n+1}-X_{n+1}\Vert ^{2}+\Vert {\hat{a}}-a\Vert _{K}^{2}+({\hat{\beta }} -\beta _{0})^{T}E(\pmb {Z}\pmb {Z}^{T}) \\ &{}\quad \times \,(\hat{\pmb {\beta }}-\pmb {\beta }_{0})+E([{\hat{f}}(U_{n+1})-f(U_{n+1})]^{2}|{\mathcal {S}})\}, \end{array} \end{aligned}$$
(5.14)

where \(\Vert {\hat{a}}-a\Vert _{K}^{2}=\int _{{\mathcal {T}}}\int _{{\mathcal {T}} }K(s,t)[{\hat{a}}(s)-a(s)][{\hat{a}}(t)-a(t)]dsdt\). Similar to the proof of Lemma A.1, we obtain that

$$\begin{aligned} \Vert {\hat{X}}_{n+1}-X_{n+1}\Vert ^{2}=O_{p}\left( h_{N}^{2r}+\frac{1}{N_{n+1}h_{N}}\right) . \end{aligned}$$
(5.15)

Under the assumptions of Theorem 3.4, using arguments similar to those used in the proof of Theorem 2 of Tang (2015), we deduce that

$$\begin{aligned} \Vert {\hat{a}}-a\Vert _{K}^{2}=O_{p}(n^{-(\delta +2\gamma -1)/(\delta +2\gamma )}). \end{aligned}$$
(5.16)

Write

$$\begin{aligned} {\hat{f}}(U_{n+1})-g(U_{n+1})=\hat{f}(U_{n+1})-f^{*}(U_{n+1})+f^{*}(U_{n+1})-f(U_{n+1}). \end{aligned}$$

Using Theorem 3.3, we obtain \( E([{\hat{f}}(U_{n+1})-f^{*}(U_{n+1})]^{2}|{\mathcal {S}}) =O_{p}(n^{-2\rho '/(2\rho '+1)})\). Using (6.12), we obtain \( E([f^{*}(U_{n+1})-f(U_{n+1}]^{2}|{\mathcal {S}})=O_{p}(h^{2\rho '})\). Hence, \(E([{\hat{f}}(U_{n+1})-f(U_{n+1})]^{2}|{\mathcal {S}})=O_{p}(n^{-2\rho '/(2\rho '+1)})\). Now (3.7) follows from (5.14)–(5.16), Assumption 6 and Theorem 3.1. This completes the proof of Theorem 3.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qingguo, T., Minjie, B. Estimation for functional linear semiparametric model. Stat Papers 62, 2799–2823 (2021). https://doi.org/10.1007/s00362-020-01215-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-020-01215-y

Keywords

Navigation