Skip to main content
Log in

On the optimality of orthogonal and balanced arrays with \(N\equiv 0\) \((\text {mod}\) 9) runs

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We investigate the role of orthogonal arrays (OAs) and balanced arrays (BAs) in both full and fractional factorial designs with N runs and m three-level quantitative factors. Firstly, due to the non-existence of the OA(18, 8, 3, 2), we find and construct a BA(18, 8, 3, 2) that represents the E-, A-, D-optimal design with \(N=18\) runs and \(m=8\) three-level factors under the main-effect model. Also, we are interested in comparing the OA(N, m, 3, 2)s with the BA(N, m, 3, 2)s, when they represent designs with \(N\equiv 0\) \((\text {mod}\) 9) runs and m three-level factors with respect to the E-, A-, D-criteria under the second-order model. We provide a generalized definition of balanced arrays. Moreover, we find and construct the OA(N, m, 3, 2)s and the BA(N, m, 3, 2)s that represent the E-, A-, D-optimal designs with \(N=9\), 18, 27, 36 runs and \(m=2\) three-level factors under the second-order model. Furthermore, it is shown that the BA(18, m, 3, 2)s, \(m=3\), 4 and a BA(27, 3, 3, 2) perform better than the OA(18, m, 3, 2)s, \(m=3\), 4 and the OA(27, 3, 3, 3), respectively, when they represent the corresponding designs with respect to the E-, A-, D-criteria under the second-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelopoulos P, Evangelaras H, Koukouvinos C (2009) Model identification using \(27\) runs three level orthogonal arrays. J Appl Stat 36(1):33–38

    Article  MathSciNet  Google Scholar 

  • Bird E (2016) The performance of orthogonal arrays with adjoined or unavailable runs. Dissertation, University of Technology Sydney

  • Bird E, Street DJ (2017) Table of ternary 18-run orthogonal arrays. http://preview.tinyurl.com/yb3onyxy. Accessed 23 March 2019

  • Bird E, Street DJ (2018) Complete enumeration of all geometrically non-isomorphic three-level orthogonal arrays in 18 runs. Aust J Comb 71(3):336–350

    MathSciNet  MATH  Google Scholar 

  • Chakravarti IM (1961) On some methods of construction of partially balanced arrays. Ann Math Stat 32:1181–1185

    Article  MathSciNet  Google Scholar 

  • Cheng SW, Ye KQ (2004) Geometric isomorphism and minimum aberration for factorial designs with quantitative factors. Ann Stat 32:2168–2185

    Article  MathSciNet  Google Scholar 

  • Dey A, Mukerjee R (1999) Fractional factorial plans. Wiley, New York

    Book  Google Scholar 

  • Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal arrays: theory and applications. Springer, New York

    Book  Google Scholar 

  • Kuwada M, Ikeda K (1998) Balanced fractional \(3^m\) factorial designs of resolution IV. J Stat Plan Inference 73:29–45

    Article  Google Scholar 

  • Lekivetz R, Tang B (2014) Multi-level orthogonal arrays for estimating main effects and specified interactions. J Stat Plan Inference 144:123–132

    Article  MathSciNet  Google Scholar 

  • Pang F, Liu MQ (2011) Geometric isomorphism check for symmetric factorial designs. J Complex 27(5):441–448

    Article  MathSciNet  Google Scholar 

  • Pericleous K, StA Chatzopoulos, Kolyva-Machera F, Kounias S (2017) Optimal designs for estimating linear and quadratic contrasts with three level factors, the case \({N}\equiv 0\)\((\text{ mod }\)\(3)\). Statistics 51:1061–1081

    Article  MathSciNet  Google Scholar 

  • Taniguchi E, Hyodo Y, Kuwada M (2010) Balanced fractional \(3^m\) factorial designs of resolutions R(\(\{ 00,10,01 \}\cup S_1 \mid \Omega \)). Sci Math Jpn, pp 503–514

  • Tsai KJ, Ye KQ, Li W (2006) A complete catalog of geometrically nonisomorphic 18-run orthogonal arrays. Presented on the 2006 international conference on design of experiments and its applications

  • Tsai PW, Gilmour SG, Mead R (2000) Projective three-level main effects designs robust to model uncertainty. Biometrika 87(2):467–475

    Article  MathSciNet  Google Scholar 

  • Wu CFJ, Hamada MS (2009) Experiments: planning, analysis, and optimization, 2nd edn. Wiley, New Jersey

    MATH  Google Scholar 

  • Xu H, Cheng SW, Wu CFJ (2004) Optimal projective three-level designs for factor screening and interaction detection. Technometrics 46(3):280–292

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The editors would like to express their deep appreciation to the referees for the valuable and constructive suggestions that greatly improved the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Chasiotis.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Algorithm 1

Step 1: The first factor of the first block is (0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2) and the first factor of the second block is (0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2).

Step 2: Write all factors having in the first 6 places 0 0 1 1 2 2, in the next 6 elements 0 0 1 1 2 2 and in the last 6 places 0 0 1 1 2 2. This is set S and has \(\left( \left( {\begin{array}{c}6\\ 2\end{array}}\right) \left( {\begin{array}{c}6-2\\ 2\end{array}}\right) \left( {\begin{array}{c}6-2-2\\ 2\end{array}}\right) \right) ^{3}=90^{3}=729000\) factors.

Step 3: Find from the set S the factors that satisfy, with the first factor of the second block, the relations \(n _{12}^{pq} =2\), p, \(q=0\), 1, 2. This is set G.

Step 4: From the set G form groups of factors that satisfy between them the relations \(n_{11}^{pq}=2\), p, \(q=0\), 1, 2. If a group has 5 factors then we have the first block.

Step 5: Find from the set S the factors that satisfy, with the last 5 factors of the first block, the relations \(n_{12}^{pq}=2\), p, \(q=0\), 1, 2 and, with the first factor from the second block, the relations \(n_{22}^{11}=\textit{n}_{22}^{02}=\textit{n}_{22}^{20}=0\), \(n_{22}^{00}=n_{22}^{22} =n_{22}^{01}=n_{22}^{10}=n_{22}^{12}=n_{22}^{21}=3\). If there is one factor, then we have the BA(18, 8, 3, 2), \(s_1=6\), \(s_2=2\).

Algorithm 2

Step 1: Choose a value of N and find all the \(1\times 9\) vectors \(\mathbf{x} =(x_1, \ldots , x_9)\) of integers such that \(\sum _{i=1}^{9}x_i=N\).

Step 2: For each vector \(\mathbf{x} \) construct the vectors \(\mathbf{v} =(v_1, v_2, v_3)\) and \(\mathbf{r} =(r_1, r_2, r_3)\), such that \(v_1=\sum _{i=1}^{3}x_i\), \(v_2=\sum _{i=4}^{6}x_i\), \(v_3=\sum _{i=7}^{9}x_i\) and \(r_1=\sum _{i=1,4,7}x_i\), \(r_2=\sum _{i=2,5,8}x_i\), \(r_3=\sum _{i=3,6,9}x_i\).

Step 3: Keep the vectors x for which \(v_i\ge 1\) and \(r_i\ge 1\) for any \(i=1\), 2, 3, and at least two elements of both v and r are equal. For these vectors x it holds that \(\mathbf{x} =(n^{00}, n^{01}, n^{02}, n^{10}, n^{11}, n^{12}, n^{20}, n^{21}, n^{22})\) or \(\mathbf{x} =(n_{12}^{00}, n_{12}^{01}, n_{12}^{02}, n_{12}^{10}, n_{12}^{11}, n_{12}^{12}, n_{12}^{20}, n_{12}^{21}, n_{12}^{22})\).

Step 4: For each vector of Step 3 construct the corresponding OA(N, 2, 3, 2) or BA(N, 2, 3, 2), according to Definition 3, and obtain the array (orthogonal or balanced) that represents the E-, A-, D-optimal design with N runs and \(m=2\) three-level factors under model (2).

Appendix 2

Let \(n_{ijk}^{pqr}\) be the number of times factors \(F_i\), \(F_j\), \(F_k\) appear together at levels p, q, r, respectively, and \(n_{ijko}^{pqrt}\) be the number of times factors \(F_i\), \(F_j\), \(F_k\), \(F_o\) appear together at levels p, q, r, t, respectively, in the N runs, where p, q, r, \(t=0\), 1, 2, \(i\ne j\ne k\ne o=1,\ldots ,m\).

Let B be a \(m\times \left( {\begin{array}{c}m\\ 2\end{array}}\right) \) matrix with elements for \(i\ne j<k=1,\ldots ,m\) equal to

$$\begin{aligned} \sum _{s=1}^{N}g_{si}g_{sj}g_{sk}=\frac{(-n_{ijk}^{000}+n_{ijk}^{002}+n_{ijk}^{020}-n_{ijk}^{022}+n_{ijk}^{200}-n_{ijk}^{202}-n_{ijk}^{220}+n_{ijk}^{222})}{2\sqrt{2}} \end{aligned}$$
(4)

and for \(i\ne j=1,\ldots ,m\) equal to

$$\begin{aligned}&\sum _{s=1}^{N}g_{si}^2g_{sj}=\frac{(-n_{ij}^{00}+n_{ij}^{02}-n_{ij}^{20}+n_{ij}^{22})}{2\sqrt{2}},\\&\sum _{s=1}^{N}g_{sj}^2g_{si}=\frac{(-n_{ij}^{00}+n_{ij}^{20}-n_{ij}^{02}+n_{ij}^{22})}{2\sqrt{2}}, \end{aligned}$$

\(\mathbf{B} ^{(1)}\) be a \(m\times \left( {\begin{array}{c}m\\ 2\end{array}}\right) \) matrix with elements for \(i=1,\ldots ,m\), \(j<k=1,\ldots ,m\) equal to

$$\begin{aligned} \sum _{s=1}^{N}g_{si}\sum _{s=1}^{N}g_{sj}g_{sk}=\frac{(n_{i}^{2}-n_{i}^{0})(n_{jk}^{00}-n_{jk}^{02}-n_{jk}^{20}+n_{jk}^{22})}{2\sqrt{2}}, \end{aligned}$$

C be a \(m\times \left( {\begin{array}{c}m\\ 2\end{array}}\right) \) matrix with elements for \(i\ne j<k=1,\ldots ,m\) equal to

$$\begin{aligned} 3\sum _{s=1}^{N}h_{si}g_{sj}g_{sk}=\frac{\sqrt{3}(n_{ijk}^{000}-n_{ijk}^{002}-n_{ijk}^{020}+n_{ijk}^{022}+n_{ijk}^{200}-n_{ijk}^{202}-n_{ijk}^{220}+n_{ijk}^{222})}{2\sqrt{2}} \end{aligned}$$
(5)

and for \(i\ne j=1,\ldots ,m\) equal to

$$\begin{aligned} 3\sum _{s=1}^{N}h_{si}g_{si}g_{sj}=\frac{\sqrt{3}(n_{ij}^{00}-n_{ij}^{02}-n_{ij}^{20}+n_{ij}^{22})}{2\sqrt{2}}, \end{aligned}$$

\(\mathbf{C} ^{(1)}\) be a \(m\times \left( {\begin{array}{c}m\\ 2\end{array}}\right) \) matrix with elements for \(i=1,\ldots ,m\), \(j<k=1,\ldots ,m\) equal to

$$\begin{aligned} 3\sum _{s=1}^{N}h_{si}\sum _{s=1}^{N}g_{sj}g_{sk}=\frac{\sqrt{3}(N-n_{i}^{1})(n_{jk}^{00}-n_{jk}^{02}-n_{jk}^{20}+n_{jk}^{22})}{2\sqrt{2}}, \end{aligned}$$

D be a \(\left( {\begin{array}{c}m\\ 2\end{array}}\right) \times \left( {\begin{array}{c}m\\ 2\end{array}}\right) \) symmetric matrix with diagonal elements for \(i\ne j=1,\ldots ,m\) equal to

$$\begin{aligned} \sum _{s=1}^{N}g_{si}^2g_{sj}^2=\frac{(n_{ij}^{00}+n_{ij}^{02}+n_{ij}^{20}+n_{ij}^{22})}{4}, \end{aligned}$$

off-diagonal elements for \(i\ne j\ne k=1,\ldots ,m\) equal to

$$\begin{aligned} \sum _{s=1}^{N}g_{si}^2g_{sj}g_{sk}=\frac{(n_{ijk}^{000}-n_{ijk}^{002}-n_{ijk}^{020}+n_{ijk}^{022}+n_{ijk}^{200}-n_{ijk}^{202}-n_{ijk}^{220}+n_{ijk}^{222})}{4} \end{aligned}$$
(6)

and for \(i\ne j\ne k\ne o=1,\ldots ,m\) equal to

$$\begin{aligned} \sum _{s=1}^{N}g_{si}g_{sj}g_{sk}g_{so}=\frac{\begin{aligned} \left( n_{ijko}^{0000}-n_{ijko}^{0002}-n_{ijko}^{0020}+n_{ijko}^{0022}-n_{ijko}^{0200}+n_{ijko}^{0202}+n_{ijko}^{0220}-n_{ijko}^{0222}\right. \\ \left. -n_{ijko}^{2000}+n_{ijko}^{2002}+n_{ijko}^{2020}-n_{ijko}^{2022}+n_{ijko}^{2200}-n_{ijko}^{2202}-n_{ijko}^{2220}+n_{ijko}^{2222}\right) \end{aligned}}{4} \end{aligned}$$
(7)

and \(\mathbf{D} ^{(1)}\) be a \(\left( {\begin{array}{c}m\\ 2\end{array}}\right) \times \left( {\begin{array}{c}m\\ 2\end{array}}\right) \) symmetric matrix with elements for \(i<j=1,\ldots ,m\), \(k<o=1,\ldots ,m\) equal to

$$\begin{aligned} \sum _{s=1}^{N}g_{si}g_{sj}\sum _{s=1}^{N}g_{sk}g_{so}=\frac{(n_{ij}^{00}-n_{ij}^{02}-n_{ij}^{20}+n_{ij}^{22})(n_{ko}^{00}-n_{ko}^{02}-n_{ko}^{20}+n_{ko}^{22})}{4}. \end{aligned}$$

For the information matrix M in (3) holds

$$\begin{aligned} \mathbf{X} ^{T}{} \mathbf{X} =\left( \begin{array}{ccc} \mathbf{L} &{}\quad \mathbf{A} &{}\quad \mathbf{B} \\ \mathbf{A} ^T &{}\quad \mathbf{Q} &{}\quad \mathbf{C} \\ \mathbf{B} ^{T} &{}\quad \mathbf{C} ^{T} &{}\quad \mathbf{D} \end{array}\right) \end{aligned}$$

and

$$\begin{aligned} \mathbf{X} ^{T}{} \mathbf{J} _{N}{} \mathbf{X} =\left( \begin{array}{ccc} \mathbf{L} ^{(1)} &{}\quad \mathbf{A} ^{(1)} &{}\quad \mathbf{B} ^{(1)} \\ \left( \mathbf{A} ^{(1)}\right) ^T &{}\quad \mathbf{Q} ^{(1)} &{}\quad \mathbf{C} ^{(1)} \\ \left( \mathbf{B} ^{(1)}\right) ^{T} &{}\quad \left( \mathbf{C} ^{(1)}\right) ^{T} &{}\quad \mathbf{D} ^{(1)} \end{array}\right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasiotis, V., Chatzopoulos, S.A., Kounias, S. et al. On the optimality of orthogonal and balanced arrays with \(N\equiv 0\) \((\text {mod}\) 9) runs. Stat Papers 62, 1965–1980 (2021). https://doi.org/10.1007/s00362-020-01167-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-020-01167-3

Keywords

Mathematics Subject Classification

Navigation