Skip to main content
Log in

Comparative studies on the adequacy check of parametric measurement error models with auxiliary variable

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The adequacy check of regression models is a fundamental approach to avoid model misspecifications. Three types of tests: the weighted integrated squared distance test, the U-statistic test and the empirical process based test, are very popular due to attractive theoretical merits such as consistency and satisfactory performances in practice. In this paper, we apply these three tests to check the adequacy of a mean parametric regression model with measurement error. By rigorously investigating the asymptotic properties of three testing methods under the null, local and global alternative hypotheses, we make detailed comparisons for the three tests. To the best of our knowledge, the results of these theoretical comparisons are novel. We conduct simulation studies and a real data analysis to compare the finite sample behaviors of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrews DF, Herzberg AM (2012) Data: a collection of problems from many fields for the student and research worker. Springer, New York

    MATH  Google Scholar 

  • Cai Z, Naik PA, Tsai CL (2000) Denoised least squares estimators: an application to estimating advertising effectiveness. Stat Sin 10:1231–1242

    MathSciNet  MATH  Google Scholar 

  • Cui H, He X, Zhu L (2002) On regression estimators with de-noised variables. Stat Sin 12:1191–1206

    MathSciNet  MATH  Google Scholar 

  • Escanciano JC (2006) A consistent diagnostic test for regression models using projections. Econom Theory 22:1030–1051

    Article  MathSciNet  Google Scholar 

  • González-Manteiga W, Crujeiras RM (2013) An updated review of goodness-of-fit tests for regression models. Test 22(3):361–411

    Article  MathSciNet  Google Scholar 

  • González-Manteiga W, Peréz-González A (2006) Goodness-of-fit tests for linear regression models with missing response data. Can J Stat 34:149–170

    Article  MathSciNet  Google Scholar 

  • Guo X, Zhu L (2017) A review on dimension-reduction based tests for regressions. In: From statistics to mathematical finance. Springer, Cham, pp 105–125

  • Guo X, Wang T, Zhu L (2015) Model checking for parametric single-index models: a dimension reduction model-adaptive approach. J R Stat Soc B 61:1–23

    Google Scholar 

  • Hall P (1984) Central limit theorem for integrated square error of multivariate nonparametric density estimators. J Multivar Anal 14:1–16

    Article  MathSciNet  Google Scholar 

  • Härdle W, Mammen E (1993) Testing parametric versus nonparametric regression. Ann Stat 21:1926–1947

    MATH  Google Scholar 

  • Koul HL, Song W et al (2009) Minimum distance regression model checking with Berkson measurement errors. Ann Stat 37(1):132–156

    Article  MathSciNet  Google Scholar 

  • Li L, Greene T (2008) Varying coefficients model with measurement error. Biometrics 64:519–526

    Article  MathSciNet  Google Scholar 

  • Li Q, Wang S (1998) A simple consistent bootstrap test for a parametric regression function. J Econom 87:145–165

    Article  MathSciNet  Google Scholar 

  • Liu Z, Liu C, Sun Z (2019) Consistent model check of errors-in-variables varying-coefficient model with auxiliary variable. J Stat Plan Inference 198:13–28

    Article  MathSciNet  Google Scholar 

  • Masry E (1996) Multivariate local polynomial regression for time series: uniform strong consistency and rates. J Time Ser Anal 17:571–599

    Article  MathSciNet  Google Scholar 

  • Meintanis SG, Allison J, Santana L (2016) Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function. Stat Pap 57(4):957–976

    Article  MathSciNet  Google Scholar 

  • Pollard D (2012) Convergence of stochastic processes. Springer, New York

    MATH  Google Scholar 

  • Song W (2009) Lack-of-fit testing in errors-in-variables regression model with validation data. Stat Probab Lett 79(6):765–773

    Article  MathSciNet  Google Scholar 

  • Stute W (1997) Nonparametric model checks for regression. Ann Stat 25:613–641

    Article  MathSciNet  Google Scholar 

  • Sun Z, Wang Q, Dai P (2009) Model checking for partially linear models with missing responses at random. J Multivar Anal 100:636–651

    Article  MathSciNet  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer series in statistics. Springer, New York

    Book  Google Scholar 

  • Wang M, Liu C, Xie T, Sun Z (2020) Data-driven model checking for errors-in-variables varying-coefficient models with replicate measurements. Comput Stat Data Anal 141(1):12–27

    Article  MathSciNet  Google Scholar 

  • Xie C, Zhu L (2019) A goodness-of-fit test for variable-adjusted models. Comput Stat Data Anal 138:27–48

    Article  MathSciNet  Google Scholar 

  • Xu W, Zhu L (2015) Nonparametric check for partial linear errors-in-covariables models with validation data. Ann Inst Stat Math 67(4):793–815

    Article  MathSciNet  Google Scholar 

  • Zhang C, Dette H (2004) A power comparison between nonparametric regression tests. Stat Probab Lett 66(3):289–301

    Article  MathSciNet  Google Scholar 

  • Zhang J, Li G, Feng Z (2015) Checking the adequacy for a distortion errors-in-variables parametric regression model. Comput Stat Data Anal 83:52–64

    Article  MathSciNet  Google Scholar 

  • Zhao P, Xue L (2010) Variable selection for semiparametric varying coefficient partially linear errors-in-variables models. J Multivar Anal 101:1872–1883

    Article  MathSciNet  Google Scholar 

  • Zheng JX (1996) A consistent test of functional form via nonparametric estimation techniques. J Econom 75:263–289

    Article  MathSciNet  Google Scholar 

  • Zhu L, Cui H (2005) Testing the adequacy for a general linear errors-in-variables model. Stat Sin 15:1049–1068

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (11571340, 11971404, 11971045), MOE (Ministry of Education in China) Project of Humanities and Social Sciences (19YJC910010), and the Open Project of Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Estimating procedure

Set \(\xi =\mathrm{E}({\tilde{\xi }}|V):=\xi (V).\) Let \(\omega _v=\text{ diag }\{k((V_1-v)/h_n),\ldots , k((V_n-v)/h_n)\}\) for \(v\in {\mathbb {R}}^q,\) where \(k(\cdot )\) is a kernel function and \(h_n\) is a bandwidth. By applying the local linear smoothing method, we can obtain the estimate \({\hat{\xi }}_n(v)\) of \(\xi (v)\):

$$\begin{aligned} {\hat{\xi }}_n(v)^\top = (1,\mathbf{0 }_{1\times q})({\mathbb {V}}_v^\top \omega _v{\mathbb {V}}_v)^{-1}{\mathbb {V}}_v^\top \omega _v\tilde{{\mathbb {X}}}, \end{aligned}$$
(A.1)

where \(\tilde{\mathbb {{X}}}= ({\tilde{\xi }}_{1}, \ldots , {\tilde{\xi }}_{n})^\top , {\mathbb {V}}_v= (V_{1v}, \ldots , V_{nv})^\top \) with \(V_{iv} = \left( 1, (V_i-v)^\top /h_n\right) ^\top .\) Then we can define an estimator \({\hat{\theta }}_n,\) which solves the estimating equation

$$\begin{aligned} \sum _{i=1}^n{\dot{g}}_{\theta }\left( {\hat{\xi }}_n(V_i),\theta \right) \{Y_i-g({\hat{\xi }}_n(V_i),\theta )\}=\mathbf{0 }, \end{aligned}$$
(A.2)

where \({\dot{g}}_{\theta }(\xi ,\theta )\) is the partial derivative of \(g(\xi ,\theta )\) with respect to \(\theta .\)

1.2 Conditions

We list some conditions needed to prove Theorems 16.

  1. (C1)

    With probability 1, both \(\xi \) and V lie in compact sets. Assume that \(\mathrm{E}(Y^2|\xi )<\infty ,\) and \({\mathrm{E}}({\tilde{\xi }}^2|V)<\infty .\)

  2. (C2)

    (i) The function \(g(\xi ,\theta )\) is three times continuously differentiable with finite first, second and third order partial derivatives respect to both \(\xi \) and \(\theta ;\) (ii) the function \(\xi (V) = \mathrm{E}({\tilde{\xi }}|V)\) is twice continuously differentiable with finite partial derivatives.

  3. (C3)

    \(\varSigma _0=\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0){\dot{g}}_{{\theta }}(\xi ,\theta _0)^\top ]\) is positive definite.

  4. (C4)

    The densities of \(\xi \) and V are bounded away from zero and infinity.

  5. (C5)

    The functions \(k(\cdot )\) and \(\lambda (\cdot )\) are bounded kernel functions of order 2.

  6. (C6)

    (i) \(\ln n/(nh^q_n)\rightarrow 0\) and \(nh_n^{2q}\rightarrow 0;\) (ii) \(nb_n^q\rightarrow \infty \) and \(nb_n^{2q}\rightarrow 0;\) (iii) \(h_nb_n^{-q/2}(\ln n)^{-1}\) \(\rightarrow 0\) and \(b_n^{2q}h_n^{-q/2}(\ln n)^{-1}\) \(\rightarrow 0.\)

Remark 1

Conditions (C1)–(C3) are necessary for the asymptotic normality of the estimator defined in (A.2). Condition (C4) aims for avoiding tedious proofs of the theorems. Conditions (C5)–(C6) are common assumptions for the convergence of the local smoothing method.

1.3 Some useful lemmas

Let \(V_{i,j}=V_i-V_j\) for \(i,j=1,\ldots ,n.\) We first list two lemmas needed for the proofs of main theorems.

Lemma 1

Under Conditions (C1)–(C5), (C6)(i) and the alternative hypothetical models \( {\mathcal {H}}_{1n} \) (3.1) with \(0\le \rho \le q/2,\) we have

$$\begin{aligned} n^{1/2}({\hat{\theta }}_{n}-\theta _0)= & {} n^{-1/2}\varSigma _0^{-1} \sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\left\{ \varepsilon _i-\varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i) \right\} \nonumber \\&\quad +b_n^{-\rho }\varSigma _0^{-1}\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )\}+o_p(1). \end{aligned}$$
(A.3)

Proof

We only prove the result with \(\rho =0.\) The proof of the results with \(0<\rho \le q/2\) is similar and we omit the details. Note that

$$\begin{aligned} A_n:=\sum _{i=1}^n{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\{Y_i-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\} = 0. \end{aligned}$$

Then \(A_n\) can be divided into

$$\begin{aligned} n^{-1/2}A_n= & {} n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})\{Y_i-g(\xi _i,{\hat{\theta }}_{n})\}\nonumber \\&\quad +\,n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})\{g(\xi _i,{\hat{\theta }}_{n})-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\}\nonumber \\&\quad +\, n^{-1/2}\sum _{i=1}^n\{{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})-{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})\}\{Y_i-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\} \nonumber \\=: & {} A_{n1}+A_{n2}+A_{n3}. \end{aligned}$$
(A.4)

By some simple computations, we can decompose \(A_{n1}\) into

$$\begin{aligned} A_{n1}= & {} n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\{Y_i-g(\xi _i,\theta _0)\} +n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\{g(\xi _i,\theta _0)-g(\xi _i,{\hat{\theta }}_{n})\}\nonumber \\&\quad +\, n^{-1/2}\sum _{i=1}^n\{{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})-{\dot{g}}_{\theta }(\xi _i,\theta _0)\} \{Y_i-g(\xi _i,\theta _0)\}\nonumber \\&\quad +\, n^{-1/2}\sum _{i=1}^n\{{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})-{\dot{g}}_{\theta }(\xi _i,\theta _0)\} \{g(\xi _i,\theta _0)-g(\xi _i,{\hat{\theta }}_{n})\}\nonumber \\=: & {} A_{n11}+A_{n12}+A_{n13}+A_{n14}. \end{aligned}$$
(A.5)

When the alternative hypothetical models \(Y=g(\xi ,\theta _0)+n^{-1/2}b_n^{-\rho }S(\xi )+\varepsilon \) with \(\rho =0\) hold, we have \(Y_i-g(\xi _i,\theta _0)=n^{-1/2}S(\xi _i)+\varepsilon _i\) for \(i=1,\ldots , n.\) By Taylor expansion and the law of large numbers, we have

$$\begin{aligned}&A_{n11}=n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\varepsilon _i+\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )\}+o_p(1),\\&A_{n12}=-\,n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0){\dot{g}}_{\theta }(\xi _i,\theta _0)^\top ({\hat{\theta }}_{n}-\theta _0) +o_p(1),\\&A_{n13}=\sqrt{n}({\hat{\theta }}_{n}-\theta _0)^\top \frac{1}{n}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0){\dot{g}}_{\theta }(\xi _i,\theta _0) \{n^{-1/2}S(\xi _i)+\varepsilon _i\}+o_p(1)=o_p(1),\\&A_{n14}=\sqrt{n}({\hat{\theta }}_{n}-\theta _0)^\top \frac{1}{n}\sum _{i=1}^n\ddot{g}_{\theta ,\theta }(\xi _i,\theta _0) {\dot{g}}_{\theta }(\xi _i,\theta _0)^\top ({\hat{\theta }}_{n}-\theta _0)+o_p(1)=o_p(1). \end{aligned}$$

Thus it yields

$$\begin{aligned} A_{n1}= & {} -\,n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\varepsilon _i+\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )\}\nonumber \\&\quad -\,\varSigma _0 n^{-1/2} ({\hat{\theta }}_{n}-\theta _0) +o_p(1) \end{aligned}$$
(A.6)

with \(\varSigma _0\) defined in Condition (C3). For \(A_{n2},\) by Taylor expansion and Condition (C2), we can validate that

$$\begin{aligned} A_{n2}=-n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i, {\hat{\theta }}_{n}){\dot{g}} _{\xi }(\xi _i,{\hat{\theta }}_{n})^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}+o_p(1). \end{aligned}$$

Let \({\dot{g}}_{\theta }(\xi _i, \theta ){\dot{g}}_{\xi }(\xi _i,\theta )^\top =:\vartheta (\xi _i, \theta ).\) Following the result of Theorem 6 in Masry (1996), we have \(\sup _v|{\hat{\xi }}_n(v) -\xi (v)|=O_P(\{\ln n /(nh^q_n)\}^{1/2} + h_n^{2}).\) Then by Taylor expansion and Conditions (C1)–(C2), \(n^{-1/2}\sum _{i=1}^n\{\vartheta (\xi _i, \theta _0)-\vartheta (\xi _i, {\hat{\theta }}_{n})\}\{{\hat{\xi }}_n(V_i)-\xi _i\}=O_P(\{\ln n /(nh^q_n)\}^{1/2} + h_n^{2})=o_p(1).\) Thus we have

$$\begin{aligned} A_{n2}= & {} -n^{-1/2}\sum _{i=1}^n \vartheta (\xi _i, \theta _0)\{{\hat{\xi }}_n(V_i)-\xi _i\} +o_p(1). \end{aligned}$$

Note that under Conditions C4, C5 and C6(i),

$$\begin{aligned} \sup _v \left\| nh_n^q(1,\mathbf{0 }_{1\times q})({\mathbb {V}}_v^\top \omega _v{\mathbb {V}}_v)^{-1}- (1/f_v(v),\mathbf{0 }_{1\times q})\right\| _2 = o_p(1). \end{aligned}$$

By the definition of \({\hat{\xi }}_n(v),\) we have

$$\begin{aligned} A_{n2}= -\,n^{-1/2}\sum _{i=1}^n\vartheta (\xi _i, \theta _0)\left\{ n^{-1}h_n^{-q}\sum _{j=1}^n{\tilde{\xi }}_j k(V_{i,j}/h_n)/f_v(V_i)-\xi _i\right\} + o_p(1). \end{aligned}$$

By Conditions C2, C5 and C6(i), we can validate that

$$\begin{aligned} A_{n2}= & {} -n^{-1/2}\sum _{j=1}^{n}\left\{ n^{-1}h_n^{-q}\sum _{i=1}^n \vartheta (\xi _i, \theta _0) k(V_{i,j}/h_n)/f_v(V_i)\right\} {\tilde{\xi }}_j\nonumber \\&\quad + \,n^{-1/2}\sum _{i=1}^n \vartheta (\xi _i, \theta _0) \xi _i +o_p(1)\nonumber \\= & {} -\,n^{-1/2}\sum _{i=1}^{n}{\dot{g}}_{\theta }(\xi _i, \theta _0){\dot{g}}_{\xi }(\xi _i,\theta _0)^\top ({\tilde{\xi }}_i- \xi _i) +o_p(1). \end{aligned}$$
(A.7)

Lemma 3 which is listed below yields the result:

$$\begin{aligned} A_{n3} = o_p(1). \end{aligned}$$
(A.8)

Since \(n^{1/2}A_{n}=0,\) from (A.4), (A.6), (A.7) and (A.8), we can obtain that

$$\begin{aligned}&n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\varepsilon _i -\varSigma _0 n^{1/2}({\hat{\theta }}_{n}-\theta )+\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )\}\\&\quad -\,n^{-1/2}\sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i, \theta _0){\dot{g}}_{\xi }(\xi _i,\theta _0)^\top ({\tilde{\xi }}_i- \xi _i)+o_p(1)=0. \end{aligned}$$

Thus Lemma 1 for \(\rho =0\) is proved. \(\square \)

Lemma 2

Under Conditions (C1)–(C6)(i) and \({\mathcal {H}}_0,\) we have

$$\begin{aligned} n^{1/2}({\hat{\theta }}_{n}-\theta _0)=n^{-1/2}\varSigma _0^{-1} \sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\left\{ \varepsilon _i- \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i)\right\} +o_p(1). \end{aligned}$$
(A.9)

Remark 2

Lemma 2 can be proved by letting \(S(\xi )=0\) in the proof of Lemma 1. We omit the details.

Lemma 3

Under the same conditions of Lemma 1, we have

$$\begin{aligned} n^{-1/2}\sum _{i=1}^n\{{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})-{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})\}\{Y_i-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\}=o_p(1). \end{aligned}$$

Proof

We notice that \(n^{-1/2}\sum _{i=1}^n\{{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})-{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})\}\{Y_i-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\}\) is just \(A_3\) in (A.4). It can be decomposed into two parts:

$$\begin{aligned} A_3= & {} n^{-1/2}\sum _{i=1}^n\{{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})-{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})\}\{Y_i-g(\xi _i,{\hat{\theta }}_{n})\}\nonumber \\&\quad -\,n^{-1/2}\sum _{i=1}^n\{{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})-{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})\}\{g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})-g(\xi _i,{\hat{\theta }}_{n})\} \nonumber \\=: & {} A_{n31}-A_{n32}. \end{aligned}$$
(A.10)

Let \(\ddot{g}_{\theta ,\xi }(\xi ,\theta )\) be the twice partial derivatives related to \(\theta \) and \(\xi .\) For the first term \(A_{n31},\) we have

$$\begin{aligned} A_{n31}= & {} n^{-1/2}\sum _{i=1}^n\ddot{g}_{\theta ,\xi }(\xi _i,{\hat{\theta }}_{n})^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}\{n^{-1/2}S(\xi _i)+\varepsilon _i\}+o_p(1) \\= & {} n^{-1/2}\sum _{i=1}^n\ddot{g}_{\theta ,\xi }(\xi _i,\theta )^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}\{n^{-1/2}S(\xi _i)+\varepsilon _i\} \\&\quad +\,n^{-1/2}\sum _{i=1}^n\{\ddot{g}_{\theta ,\xi }(\xi _i,{\hat{\theta }}_{n})-\ddot{g}_{\theta ,\xi }(\xi _i,\theta )\}^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}\{n^{-1/2}S(\xi _i)+\varepsilon _i\}+o_p(1)\\=: & {} A^{[1]}_{n31}+A^{[2]}_{n31}+o_p(1). \end{aligned}$$

By the similar method to prove (A.7), we can prove that \(n^{-1}\sum _{i=1}^n\ddot{g}_{\theta ,\xi }(\xi _i,\theta )^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}S(\xi _i)=O_p(n^{-1/2})=o_p(1).\) So further by the definition of \({\hat{\xi }}_n(v)\) and some simple computations, it yields

$$\begin{aligned} A^{[1]}_{n31}= & {} n^{-1/2}\sum _{i=1}^n\varepsilon _i\ddot{g}_{\theta ,\xi }(\xi _i,\theta )^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}+o_p(1) \\= & {} n^{-1/2}\sum _{i=1}^n\varepsilon _i\ddot{g}_{\theta ,\xi }(\xi _i,\theta )^\top \left\{ n^{-1}h_n^{-q}\sum _{j=1}^n({\tilde{\xi }}_j-\xi _i) k(V_{i,j}/h_n)/f_v(V_i)\right\} +o_p(1) \\= & {} n^{-1/2}\sum _{i=1}^n\varepsilon _i\ddot{g}_{\theta ,\xi }(\xi _i,\theta )^\top \left\{ n^{-1}h_n^{-q}\sum _{j=1,j\ne i}^n({\tilde{\xi }}_j -\xi _j) k(V_{i,i}/h_n)/f_v(V_i)\right\} \\&\quad +\,n^{-3/2}h_n^{-q}\sum _{i=1}^n\varepsilon _i\ddot{g}_{\theta ,\xi }(\xi _i,\theta )^\top ({\tilde{\xi }}_i -\xi _i) k(V_{i,j}/h_n)/f_v(V_i)\\&\quad +\,n^{-1/2}\sum _{i=1}^n\varepsilon _i\ddot{g}_{\theta ,\xi }(\xi _i,\theta )^\top \left\{ n^{-1}h_n^{-q}\sum _{j=1}^n(\xi _j-\xi _i) k(V_{i,j}/h_n)/f_v(V_i)\right\} +o_p(1)\\= & {} A^{[1]}_{n31,1}+A^{[1]}_{n31,2}+A^{[1]}_{n31,3}+o_p(1). \end{aligned}$$

We can prove that the second moment of each component of the vector \(A^{[1]}_{n31,1}\) is \(O(n^{-1}h_n^{-q}).\) So \(A^{[1]}_{n31,1}=o_p(1)\) by Condition (C6). Note that \((nh_n^{q})^{-1/2}\sum _{i=1}^n\) \(\varepsilon _i\) \(\ddot{g}_{\theta ,\xi }(\xi _i,\theta )^\top ({\tilde{\xi }}_i -\xi _i)\) \(k(V_{i,j}/h_n)/f_v(V_i)\) \(=O_p(1).\) Then it yields \(A^{[1]}_{n31,2}=O_p(n^{-1}h_n^{-q/2})=o_p(1)\) by the condition of the bandwidth. Recall that \(\xi _j-\xi _i=\xi (V_j)-\xi (V_i).\) Via Taylor expansion of \(\xi (V_j)-\xi (V_i),\) we can obtain that \(A^{[1]}_{n31,2}=O_p(h_n^2)=o_p(1).\) Thus we have the result that \(A^{[1]}_{n31}=o_p(1).\) For \(A^{[2]}_{n31},\) we have \(A^{[2]}_{n31}=({\hat{\theta }}_{n}-\theta )n^{-1/2}\sum _{i=1}^n \breve{g}_{\theta ,\xi ,\theta }(\xi _i,\theta )\}^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}\{n^{-1/2}S(\xi _i)+\varepsilon _i\}\) with \(\breve{g}_{\theta ,\xi ,\theta }(\xi _i,\theta )\) the three times partial derivative related to \(\theta ,\xi ,\theta .\) By similar method to prove \(A^{[1]}_{n31}=o_p(1),\) we can prove that \(n^{-1/2}\sum _{i=1}^n \breve{g}_{\theta ,\xi ,\theta }(\xi _i,\theta )\}^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}\{n^{-1/2}S(\xi _i)+\varepsilon _i\}=o_p(1).\) Further we can obtain \(A^{[2]}_{n31}=o_p(1)\) and then \(A_{n31}=o_p(1).\) For \(A_{n32},\) by denoting \(\tau (\xi ,\theta )={\dot{g}} _{\xi }(\xi _i,\theta )\ddot{g}_{\theta ,\xi }(\xi ,\theta )^\top ,\) we have

$$\begin{aligned} A_{n32}= & {} n^{-1/2}\sum _{i=1}^n\{{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})-{\dot{g}}_{\theta }(\xi _i,{\hat{\theta }}_{n})\}\{g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})-g(\xi _i,{\hat{\theta }}_{n})\} \nonumber \\= & {} n^{-1/2}\sum _{i=1}^n\{{\hat{\xi }}_n(V_i)-\xi _i\}^\top {\dot{g}} _{\xi }(\xi _i,{\hat{\theta }}_{n})\ddot{g}_{\theta ,\xi }(\xi _i,{\hat{\theta }}_{n})^\top \{{\hat{\xi }}_n(V_i)-\xi _i\}+o_p(1) \nonumber \\= & {} n^{-1/2}\sum _{i=1}^n\{{\hat{\xi }}_n(V_i)-\xi _i\}^\top \tau (\xi _i,\theta )\{{\hat{\xi }}_n(V_i)-\xi _i\}\nonumber \\&\quad +\,n^{-1/2}\sum _{i=1}^n\{{\hat{\xi }}_n(V_i)-\xi _i\}^\top \{\tau (\xi _i,{\hat{\theta }}_{n})-\tau (\xi _i,\theta )\}\{{\hat{\xi }}_n(V_i)-\xi _i\} +o_p(1).\nonumber \\ \end{aligned}$$
(A.11)

By the existing result \(\sup _v|{\hat{\xi }}_n(v) -\xi (v)|=O_P(\{\ln n /(nh^q_n)\}^{1/2} + h_n^{2}),\) we can prove that both terms in (A.11) are \(o_p(1).\) Recalling that we have proved \(A_{n31}=o_p(1),\) therefore we obtain that \(A_{n3}=o_p(1)\) from (A.10). \(\square \)

Recall that \(\varDelta _{\theta }(\xi ,{\tilde{\xi }}) =({\tilde{\xi }}-\xi )^\top {\dot{g}}_{\xi }(\xi ,\theta ).\) Then we prove a lemma needed in Proof of Theorem 5.

Lemma 4

Let \({\hat{\xi }}_{i}= {\hat{\xi }}_n(V_i)\) and \(\lambda _{b_n}(V_{i,j})= \lambda ((V_i-V_j)/b_n)/b_n^q.\) Assume that Conditions (C1)–(C6) hold, then we have

$$\begin{aligned}&n^{-1}b_n^{q/2}\sum _{i\ne j}(\xi _i-{\hat{\xi }}_{i})^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top (\xi _j-{\hat{\xi }}_{j})\lambda _{b_n}(V_{i,j})\nonumber \\&\quad = n^{-1}b_n^{q/2} \sum _{i\ne j} \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i) \varDelta _{\theta _0}(\xi _j,{\tilde{\xi }}_j)\lambda _{b_n}(V_{i,j}) + o_p(1). \end{aligned}$$
(A.12)

Proof

Let \(U_n =n^{-1}b_n^{q/2}\sum _{i\ne j}(\xi _i-{\hat{\xi }}_{i})^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top (\xi _j-{\hat{\xi }}_{j})\lambda _{b_n}(V_{i,j}).\) Then

$$\begin{aligned} U_n= & {} n^{-1}b_n^{q/2}\sum _{i\ne j}\xi _i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top \xi _j\lambda _{b_n}(V_{i,j})\nonumber \\&\quad -\,2n^{-1}b_n^{q/2}\sum _{i\ne j}\xi _i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top {\hat{\xi }}_j\lambda _{b_n}(V_{i,j})\nonumber \\&\quad +\,n^{-1}b_n^{q/2}\sum _{i\ne j}{\hat{\xi }}_i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top {\hat{\xi }}_j\lambda _{b_n}(V_{i,j}) \nonumber \\= & {} :U_{n1}-2U_{n2}+U_{n3}. \end{aligned}$$
(A.13)

We first focus on \(U_{n2}.\) Let \(k_{h_n}(V_{j,s})=k((V_j-V_s)/h_n)/h_n^q.\) Note that \(\sup _j \Vert {\hat{\xi }}_j -n^{-1}\sum _{s=1}^n{\tilde{\xi }}_s k_{h_n}(V_{j,s})/f_v(V_j) \Vert _2 = o_p(1).\) Then

$$\begin{aligned} U_{n2}= & {} n^{-2}b_n^{q/2}\sum _{i=1}^n\sum _{j=1}^n \xi _i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top \sum _{s=1}^n{\tilde{\xi }}_s k_{h_n}(V_{j,s})\lambda _{b_n}(V_{i,j})/f_v(V_j)\\&\quad -\,n^{-2}b_n^{q/2}\sum _{i=1}^n \xi _i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _i,\theta _0)^\top \sum _{s=1}^n{\tilde{\xi }}_s k_{h_n}(V_{i,s})\lambda _{b_n}(V_{i,i})/f_v(V_i)+o_p(1)\\= & {} U_{n2}^{[1]} - U_{n2}^{[2]}. \end{aligned}$$

By law of large numbers, we can prove that \(\frac{1}{n}\sum _{j=1}^n{\dot{g}}_{\xi }(\xi _j,\theta _0)^\top k_{h_n}(V_{j,s})\lambda _{b_n}(V_{i,j})/f_v(V_j)=(1+o_p(1)){\dot{g}}_{\xi }(\xi _s,\theta _0)^\top \lambda _{b_n}(V_{i,s}).\) For \(U_{n2}^{[1]},\) we have

$$\begin{aligned} U_{n2}^{[1]}= & {} n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{s=1}^n \xi _i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0)\left\{ \frac{1}{n}\sum _{j=1}^n{\dot{g}}_{\xi }(\xi _j,\theta _0)^\top k_{h_n}(V_{j,s})\lambda _{b_n}(V_{i,j})/f_v(V_j)\right\} {\tilde{\xi }}_s\\= & {} n^{-1}b_n^{q/2} \sum _{i=1}^n\sum _{s=1}^n \xi _i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _s,\theta _0)^\top {\tilde{\xi }}_s\lambda _{b_n}(V_{i,s})+o_p(1). \end{aligned}$$

Similarly,

$$\begin{aligned} U_{n2}^{[2]}= & {} n^{-1}b_n^{q/2}(1+o_p(1))\sum _{i=1}^n \{\xi _i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0)\}^2\lambda _{b_n}(V_{i,i}). \end{aligned}$$

Thus

$$\begin{aligned} U_{n2} = n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j\ne i}^n \xi _i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top {\tilde{\xi }}_j\lambda _{b_n}(V_{i,j})+o_p(1). \end{aligned}$$
(A.14)

Similar to prove (A.14), we can obtain that

$$\begin{aligned} U_{n3} = n^{-1}b_n^{q/2} \sum _{i=1}^n\sum _{j\ne i}^n {\tilde{\xi }}_i^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top {\tilde{\xi }}_j\lambda _{b_n}(V_{i,j})+o_p(1).\nonumber \\ \end{aligned}$$
(A.15)

Recall that \(\varDelta _{\theta }(\xi ,{\tilde{\xi }}) =({\tilde{\xi }}-\xi )^\top {\dot{g}}_{\xi }(\xi ,\theta ).\) Combining (A.13)–(A.15), we have

$$\begin{aligned} U_{n} = (1+o_p(1))\sum _{i=1}^n\sum _{j\ne i}^n \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i) \varDelta _{\theta _0}(\xi _j,{\tilde{\xi }}_j) \lambda _{b_n}(V_{i,j})+o_p(1). \end{aligned}$$

Since \(n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j\ne i}^n \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i) \varDelta _{\theta _0}(\xi _j,{\tilde{\xi }}_j) \lambda _{b_n}(V_{i,j}) = O_p(1)\) by verifying \(\mathrm{E} (T_n) = 0\) and \(\mathrm{E} (T_n^2) = O(1),\) the lemma is proved. \(\square \)

1.4 Proofs of the Theorems

Theorems 2.1–2.3 are special cases of Theorems 46 with \(S(\xi )=0.\) As follows, we give the detailed proofs for Theorems 46.

Proof of Theorem 4

First define \( B_n(v)= n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\{Y_i-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\} \lambda ((V_i-v)/b_n). \) Then \(T_n^{\mathtt {WISD}}=\int B^2_n(v)dv.\) For \(B_n(v),\) it can be decomposed into

$$\begin{aligned} B_n(v)= & {} n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\{Y_i-g(\xi _i,\theta _0)\} \lambda ((V_i-v)/b_n)\nonumber \\&\quad +\,n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\{g(\xi _i,\theta _0)-g({\hat{\xi }}_n(V_i),\theta _0)\} \lambda ((V_i-v)/b_n)\nonumber \\&\quad +\,n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\{g({\hat{\xi }}_n(V_i),\theta _0)-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\} \lambda ((V_i-v)/b_n)\nonumber \\=: & {} B_{n1}(v)+B_{n2}(v)+B_{n3}(v). \end{aligned}$$
(A.16)

For the alternative hypothetical models (3.1) when \(\rho =q/2,\) we can prove that

$$\begin{aligned} B_{n1}(v)= & {} n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\varepsilon _i \lambda ((V_i-v)/b_n)\nonumber \\&\quad +\,\mathrm{E}[S(\xi )|V=v]f_v(v) +o_p(1). \end{aligned}$$
(A.17)

For the second term \(B_{n2}(v),\) we can obtain that

$$\begin{aligned} B_{n2}(v) = n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}{\dot{g}}_{\xi }(\xi _i,\theta _0)^\top \{\xi _i-{\hat{\xi }}_n(V_i)\} \lambda ((V_i-v)/b_n)+o_p(1). \end{aligned}$$

By the definition of \({\hat{\xi }}_n(v),\) it follows that

$$\begin{aligned} B_{n2}(v)= & {} - n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\lambda ((V_i-v)/b_n){\dot{g}}_{\xi }(\xi _i,\theta _0)^\top \nonumber \\&\quad \times \,\left\{ n^{-1}h_n^{-q}\sum _{j=1}^n{\tilde{\xi }}_j k(V_{i,j}/h_n)/f_v(V_i)\right\} \nonumber \\&\quad +\,n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\lambda ((V_i-v)/b_n){\dot{g}}_{\xi }(\xi _i,\theta _0)^\top \xi _i +o_p(1) \nonumber \\=: & {} -B^{[1]}_{n2}(v)+B^{[2]}_{n2}(v)+o_p(1). \end{aligned}$$
(A.18)

Let \(\psi _v(V_i)=\lambda ((V_i-v)/b_n){\dot{g}}_{\xi }(\xi _i,\theta _0)^\top /f_v(V_i). \) For \(B^{[1]}_{n2}(v),\) we can get

$$\begin{aligned} B^{[1]}_{n2}(v)= & {} n^{-1/2}b_n^{-q/2}\sum _{j=1}^{n}\left\{ n^{-1}h_n^{-q}\sum _{i=1}^n \psi _v(V_i) k(V_{i,j}/h_n)\right\} {\tilde{\xi }}_j \nonumber \\= & {} n^{-1/2}b_n^{-q/2}\sum _{j=1}^{n} f_v(V_j)\psi _v(V_j){\tilde{\xi }}_j +o_p(1). \end{aligned}$$
(A.19)

Then combining (A.18) and (A.19), we have

$$\begin{aligned} B_{n2}(v)= n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}(\xi _i -{\tilde{\xi }}_i)^\top {\dot{g}}_{\xi }(\xi _i,\theta _0) \lambda ((V_i-v)/b_n)+o_p(1). \end{aligned}$$
(A.20)

For \(B_{n3}(v),\) via Taylor expansion and a simple decomposition, we have

$$\begin{aligned} B_{n3}(v)= & {} n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),\theta _0)^\top (\theta _0-{\hat{\theta }}_{n})\lambda ((V_i-v)/b_n)+o_p(1) \nonumber \\= & {} n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\{{\dot{g}}_{\theta }({\hat{\xi }}_n(V_i),\theta _0)-{\dot{g}}_{\theta }(\xi _i,\theta _0)\}^\top (\theta _0-{\hat{\theta }}_{n}) \lambda ((V_i-v)/b_n)\nonumber \\&\quad +\,n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}{\dot{g}}_{\theta }(\xi _i,\theta _0)^\top (\theta _0-{\hat{\theta }}_{n}) \lambda ((V_i-v)/b_n)+o_p(1)\nonumber \\= & {} B_{n3}^{[1]}(v)+B_{n3}^{[2]}(v)+o_p(1). \end{aligned}$$
(A.21)

Note that \(1/(nb^q_n)\sum _{i=1}^{n}{\dot{g}}_{\theta }(\xi _i,\theta _0)\lambda ((V_i-v)/b_n)=f_v(v){\dot{g}}_{\theta }(\xi (v),\theta )+o_p(1).\) Therefore by the result of Lemma 1, it yields

$$\begin{aligned} B_{n3}^{[2]}(v)= & {} f_v(v){\dot{g}}_{\theta }(\xi (v),\theta )^\top n^{1/2}b_n^{q/2}(\theta _0-{\hat{\theta }}_{n})+o_p(1) \\= & {} -f_v(v){\dot{g}}_{\theta }(\xi (v),\theta )^\top \varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]+o_p(1). \end{aligned}$$

By the result of Lemma 1 with \(\rho =q/2,\) we have \(\Vert \theta _0-{\hat{\theta }}_{n}\Vert _2=O_{p}(n^{-1/2}b_n^{-q/2}).\) Then with Condition C2, we have

$$\begin{aligned} |B_{n3}^{[1]}(v)|\le & {} c\sup _i \Vert {\hat{\xi }}_n(V_i) - \xi (V_i)\Vert _2 \Vert \theta _0-{\hat{\theta }}_{n})\Vert _2\left\{ n^{-1}b_n^{-q}\sum _{i=1}^{n}\lambda ((V_i-v)/b_n)\right\} , \end{aligned}$$

where c is a finite positive number. Note that \(1/(nb^q_n)\sum _{i=1}^{n}\lambda ((V_i-v)/b_n)=f_v(v)+o_p(1)\) and \(\sup _i \Vert {\hat{\xi }}_n(V_i) - \xi (V_i)\Vert _2 = o_p(1).\) Note that \(f_v(v)\) is bound away from zero and infinity in Conditions C4. Then it yields \(B_{n3}^{[1]}(v)=o_{p}(1).\) Combining the above discussions and (A.21), we have that

$$\begin{aligned} B_{n3}(v)= -f_v(v){\dot{g}}_{\theta }(\xi (v),\theta )^\top \varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]+o_p(1). \end{aligned}$$
(A.22)

Thus from (A.16)–(A.17), (A.20) and (A.22), it yields

$$\begin{aligned} B_n(v)= & {} n^{-1/2}b_n^{-q/2}\sum _{i=1}^{n}\left\{ \varepsilon _i+(\xi _i -{\tilde{\xi }}_i)^\top {\dot{g}}_{\xi }(\xi _i,\theta _0)\right\} \lambda ((V_i-v)/b_n)\\&\quad -\, f_v(v){\dot{g}}_{\theta }(\xi (v),\theta )^\top \varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )] +f_v(v) \mathrm{E}(S(\xi )|V=v)+o_p(1). \end{aligned}$$

Note that the kernel function \(\lambda (\cdot )\) is a real function, then the class \(\{\{\varepsilon +(X-{\tilde{\xi }})^\top {\dot{g}}_{\xi }(\xi ,\theta _0)\}\lambda ((V-v)/b_n): v\in {\mathbb {R}}^q\}\) is a V–C class by the Lemma 28 of Pollard (2012) and Lemma 2.6.18 of van der Vaart and Wellner (1996). Thus we can prove that \(B_n(v)\) converges to a Gauss process \(\varUpsilon (v).\) Further by Theorem 1.11.1 of van der Vaart and Wellner (1996), we prove the result of \(T_n^{\mathtt {WISD}}.\) \(\square \)

Proof of Theorem 5

Recall that \(T_n^{\mathtt {U}} = n^{-1}b_n^{q/2}\sum _{i\ne j}(Y_i-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n}))(Y_j-g({\hat{\xi }}_n(V_j),{\hat{\theta }}_{n})) \lambda (V_{i,j}/b_n)/b_n^q.\) Let \(\lambda _{b_n}(\cdot )= \lambda (\cdot /b_n)/b_n^q\) and \({\hat{\xi }}_i = {\hat{\xi }}_n(V_i).\) Then

$$\begin{aligned} T_n^{\mathtt {U}}= & {} \sum _{k=1}^3 D_{nk}, \end{aligned}$$
(A.23)

where

$$\begin{aligned} D_{n1}= & {} n^{-1}b_n^{q/2}\sum _{j\ne i}\{Y_i-g(\xi _i,\theta _0)\}\{Y_j-g(\xi _j,\theta _0)\} \lambda _{b_n}(V_{i,j}),\\ D_{n2}= & {} n^{-1}b_n^{q/2}\sum _{j\ne i}\{g(\xi _i,\theta _0)-g({\hat{\xi }}_i,{\hat{\theta }}_{n})\}\{g(\xi _j,{\theta }_{0})-g({\hat{\xi }}_j,{\hat{\theta }}_{n})\}\lambda _{b_n}(V_{i,j}),\\ D_{n3}= & {} 2n^{-1}b_n^{q/2}\sum _{j\ne i}\{Y_i-g(\xi _i,\theta _0)\}\{g(\xi _j,{\theta }_{0})-g({\hat{\xi }}_j,{\hat{\theta }}_{n})\} \lambda _{b_n}(V_{i,j}). \end{aligned}$$

For \(D_{n1},\) under the local alternative models (3.1) with \(\rho =q/4,\) it is shown that

$$\begin{aligned} D_{n1}= & {} n^{-1}b_n^{q/2}\sum _{j\ne i}\varepsilon _i\varepsilon _j \lambda _{b_n}(V_{i,j})+n^{-2}\sum _{j\ne i}S(\xi _i)S(\xi _j)\lambda _{b_n}(V_{i,j})\nonumber \\&\quad +\,n^{-3/2}b_n^{q/4}\sum _{j\ne i}\{S(\xi _i)\varepsilon _j+S(\xi _j)\varepsilon _i\} \lambda _{b_n}(V_{i,j})+o_p(1). \end{aligned}$$
(A.24)

Following the similar argument as Lemma 3.3b in Zheng (1996), we have

$$\begin{aligned} \frac{1}{n(n-1)}\sum _{j\ne i}S(\xi _j)\varepsilon _i \lambda _{b_n}(V_{i,j}) = O_p(n^{-1/2}). \end{aligned}$$

Then with Condition C6(ii),

$$\begin{aligned} n^{-3/2}b_n^{q/4}\sum _{j\ne i}\{S(\xi _i)\varepsilon _j+S(\xi _j)\varepsilon _i\} \lambda _{b_n}(V_{i,j}) = O_p(b_n^{q/4}) = o_p(1). \end{aligned}$$

Rewriting \(n^{-2}\sum _{j\ne i}S(\xi _i)S(\xi _j)\lambda _{b_n}(V_{i,j})\) as \(n^{-1}\sum _{i= 1}^n S(\xi _i)\frac{n-1}{n}\{(n-1)^{-1}\sum _{j= 1,j\ne i}^n\) \(S(\xi _j)\lambda _{b_n}(V_{i,j})\},\) then it is equal to \(n^{-1}\sum _{i= 1}^nS(\xi _i) E\{S(\xi )|V=V_i\}f_v(V_i)+ o_p(1)=\mathrm{E}(S^2(\xi )f_v(V))+o_p(1).\) Thus the expression (A.24) for \(D_{n1}\) reduces to

$$\begin{aligned} D_{n1}= & {} n^{-1}b_n^{q/2}\sum _{j\ne i}\varepsilon _i\varepsilon _j \lambda _{b_n}(V_{i,j})+\mathrm{E}(S^2(\xi )f_v(V))+o_p(1). \end{aligned}$$
(A.25)

Next we turn to the term \(D_{n2}\) in (A.23). Define

$$\begin{aligned} D_{n2}^*= & {} n^{-1}b_n^{q/2}\sum _{i\ne j}({\hat{\theta }}_{n}-\theta _0)^\top {\dot{g}}_{\theta }(\xi _i,\theta _0){\dot{g}}_{\theta }(\xi _j,\theta _0)^\top ({\hat{\theta }}_{n}-\theta _0) \lambda _{b_n}(V_{i,j})\nonumber \\&\quad +\,n^{-1}b_n^{q/2}\sum _{i\ne j}(\xi _i-{\hat{\xi }}_{i})^\top {\dot{g}}_{\xi }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top (\xi _j-{\hat{\xi }}_{j}) \lambda _{b_n}(V_{i,j})\nonumber \\&\quad -\,2({\hat{\theta }}_{n}-\theta _0)^\top \{n^{-1}b_n^{q/2}\sum _{i\ne j} {\dot{g}}_{\theta }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top (\xi _j-{\hat{\xi }}_{j}) \lambda _{b_n}(V_{i,j})\}\nonumber \\:= & {} D_{n2}^{*[1]}+D_{n2}^{*[2]}-2D_{n2}^{*[3]}. \end{aligned}$$
(A.26)

By Taylor expansion and Conditions C2, C4 and C5, we have \(D_{n2} = D_{n2}^*+o_p(1).\) We only need to focus on \(D_{n2}^*\) for \(D_{n2}.\) By the result of Lemma 1 under the alternative hypothesis (3.1) with \(\rho =q/4,\) we have \(n^{1/2}b_n^{q/4}({\hat{\theta }}_{n}-\theta _0)=\varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]+o_p(1).\) Therefore, it follows that

$$\begin{aligned} D_{n2}^{*[1]}= & {} n^{1/2}b_n^{q/4}({\hat{\theta }}_{n}-\theta _0)^\top \left\{ n^{-2}\sum _{i\ne j}{\dot{g}}_{\theta }(\xi _i,\theta _0){\dot{g}}_{\theta }(\xi _j,\theta _0)^\top \lambda _{b_n}(V_{i,j})\right\} n^{1/2}b_n^{q/4}(\theta _0-{\hat{\theta }}_{n})\nonumber \\= & {} \mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]^\top \varSigma _0^{-1} \mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0){\dot{g}}_{\theta }(\xi ,\theta _0)^\top f_v(V)]\nonumber \\&\quad \varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]+o_p(1). \end{aligned}$$
(A.27)

Recall that \(\varDelta _{\theta }(\xi ,{\tilde{\xi }}) =({\tilde{\xi }}-\xi )^\top {\dot{g}}_{\xi }(\xi ,\theta ).\) By Lemma 4, we have

$$\begin{aligned} D_{n2}^{*[2]}= n^{-1}b_n^{q/2} \sum _{i\ne j} \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i) \varDelta _{\theta _0}(\xi _j,{\tilde{\xi }}_j)\lambda _{b_n}(V_{i,j}) +o_p(1). \end{aligned}$$
(A.28)

Let \(n^{-3/2}b_n^{q/2}\sum _{i\ne j} {\dot{g}}_{\theta }(\xi _i,\theta _0){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top (\xi _j-{\hat{\xi }}_{j}) \lambda _{b_n}(V_{i,j})=:M_n.\) Then it yields

$$\begin{aligned} M_n= & {} n^{-1/2}b_n^{q/2} \sum _{j=1}^n \left\{ n^{-1}\sum _{i=1,i\ne j}^n{\dot{g}}_{\theta }(\xi _i,\theta _0) \lambda _{b_n}(V_{i,j})\right\} {\dot{g}}_{\xi }(\xi _j,\theta _0)^\top (\xi _j-{\hat{\xi }}_{j}) \\= & {} n^{-1/2}b_n^{q/2} \sum _{j=1}^n {\dot{g}}_{\theta }(\xi _j,\theta _0)f_v(V_j){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top (\xi _j-{\hat{\xi }}_{j})+o_p(1). \end{aligned}$$

By denoting \({\dot{g}}_{\theta }(\xi _j,\theta _0)f_v(V_j){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top \) as a new function, for example \(V(\xi _j,\theta _0),\) similar to the proof of (A.7), it yields \(M_n= n^{-1/2}b_n^{q/2} \sum _{j=1}^n {\dot{g}}_{\theta }(\xi _j,\theta _0)f_v(V_j){\dot{g}}_{\xi }(\xi _j,\theta _0)^\top \) \((\xi _j-{\hat{\xi }}_{j})+o_p(1).\) Further recalling that \(n^{1/2}b_n^{q/4}(\theta _0-{\hat{\theta }}_{n})=O_p(1),\) we have

$$\begin{aligned} D_{n2}^{*[3]}=O_p\left( b_n^{q/2}n^{-1/2}b_n^{-q/4}\right) =O_p\left( n^{-1/2}b_n^{q/4}\right) =o_p(1). \end{aligned}$$
(A.29)

From (A.26), (A.27), (A.28), (A.29) and \(D_{n2} = D_{n2}^*+o_p(1),\) we have

$$\begin{aligned} D_{n2}= & {} n^{-1}b_n^{q/2} \sum _{i\ne j} \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i) \varDelta _{\theta _0}(\xi _j,{\tilde{\xi }}_j)\lambda _{b_n}(V_{i,j})+\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]^\top \varSigma _0^{-1} \nonumber \\&\quad \times \,\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0){\dot{g}}_{\theta }(\xi ,\theta _0)^\top f_v(V)]\varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )] + o_p(1). \end{aligned}$$
(A.30)

Under (3.1) with \(\rho =q/4,\) noticing that\(n^{1/2}b_n^{q/4}(\theta _0-{\hat{\theta }}_{n})=O_p(1),\) we have

$$\begin{aligned} D_{n3}= & {} 2n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j\ne i}\varepsilon _i\{g(\xi _j,{\theta }_{0})-g(\xi _j,{\hat{\theta }}_{n})+g(\xi _j,{\hat{\theta }}_{n})-g({\hat{\xi }}_j,{\hat{\theta }}_{n})\} \lambda _{b_n}(V_{i,j})\nonumber \\&\quad +\,2n^{-3/2}b_n^{q/4}\sum _{i=1}^n\sum _{j\ne i}S(\xi _i)\{g(\xi _j,{\theta }_{0})-g(\xi _j,{\hat{\theta }}_{n})\nonumber \\&\quad +\,g(\xi _j,{\hat{\theta }}_{n})-g({\hat{\xi }}_j,{\hat{\theta }}_{n})\} \lambda _{b_n}(V_{i,j})\nonumber \\= & {} 2n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j\ne i}\varepsilon _i{\dot{g}}_{\theta }(\xi _j,{\theta }_{0})^\top (\theta _0-{\hat{\theta }}_{n}) \lambda _{b_n}(V_{i,j})\nonumber \\&\quad +\,2n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j\ne i}\varepsilon _i{\dot{g}}_{\xi }(\xi _j,{\theta }_{0})^\top (\xi _j-{\hat{\xi }}_j) \lambda _{b_n}(V_{i,j})\nonumber \\&\quad +\,2n^{-3/2}b_n^{q/4}\sum _{i=1}^n\sum _{j\ne i}S(\xi _i){\dot{g}}_{\theta }(\xi _j,{\theta }_{0})^\top (\theta _0-{\hat{\theta }}_{n}) \lambda _{b_n}(V_{i,j})\nonumber \\&\quad +\,2n^{-3/2}b_n^{q/4}\sum _{i=1}^n\sum _{j\ne i}S(\xi _i){\dot{g}}_{\xi }(\xi _j,{\theta }_{0})^\top (\xi _j-{\hat{\xi }}_j) \lambda _{b_n}(V_{i,j})+o_p(1)\nonumber \\:= & {} D_{n3}^{[1]}+D_{n3}^{[2]}+D_{n3}^{[3]}+D_{n3}^{[4]}+o_p(1). \end{aligned}$$
(A.31)

We can prove that \( n^{-3/2}\sum _{i=1}^n\sum _{j\ne i}\varepsilon _i {\dot{g}}_{\theta }(\xi _j,{\theta }_{0}) \lambda _{b_n}(V_{i,j})\) \( = n^{-1/2}\sum _{i=1}^n\varepsilon _i\left\{ n^{-1}\sum _{j=1,j\ne i}^n {\dot{g}}_{\theta }(\xi _j,{\theta }_{0}) \lambda _{b_n}(V_{i,j})\right\} = n^{-1/2}\sum _{i=1}^n\varepsilon _i {\dot{g}}_{\theta }(\xi _i,{\theta }_{0})f_v(V_i)+o_p(1).\) Further by the fact that \(n^{1/2}b_n^{q/4}(\theta -{\hat{\theta }}_{n})=O_p(1),\) we have that

$$\begin{aligned} D_{n3}^{[1]} = O_p\left( b_n^{q/4}\right) =o_p(1). \end{aligned}$$
(A.32)

For \(D_{n3},\) we first consider the part \(n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j=1}^n\varepsilon _i{\dot{g}}_{\xi }(\xi _j,{\theta }_{0})^\top {\hat{\xi }}_j \lambda _{b_n}(V_{i,j})\):

$$\begin{aligned}&n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j=1}^n\varepsilon _i{\dot{g}}_{\xi }(\xi _j,{\theta }_{0})^\top {\hat{\xi }}_j) \lambda _{b_n}(V_{i,j}) \nonumber \\&\quad = n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j=1}^n\varepsilon _i{\dot{g}}_{\xi }(\xi _j,{\theta }_{0})^\top \nonumber \\&\qquad \times \,\left\{ n^{-1}h_n^{-q}\sum _{s=1}^n{\tilde{\xi }}_s k(V_{j,s}/h_n)/f_v(V_j)\right\} \lambda _{b_n}(V_{i,j})+o_p(1) \nonumber \\&\quad = n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{s=1}^n\varepsilon _i \left\{ n^{-1}h_n^{-q}\sum _{j=1}^n{\dot{g}}_{\xi }(\xi _j,{\theta }_{0})^\top \lambda _{b_n}(V_{i,j}) k(V_{j,s}/h_n)/f_v(V_j)\right\} {\tilde{\xi }}_s\nonumber \\&\qquad +\,o_p(1) \nonumber \\&\quad = n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{s=1}^n\varepsilon _i {\dot{g}}_{\xi }(\xi _s,{\theta }_{0})^\top {\tilde{\xi }}_s\lambda _{b_n}(V_{i,s})+o_p(1). \end{aligned}$$
(A.33)

Thus it is easy to obtain that

$$\begin{aligned} D_{n3}^{[2]}= & {} -2n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j\ne i}\varepsilon _i\varDelta _{\theta _0}(\xi _j,{\tilde{\xi }}_j) \lambda _{b_n}(V_{i,j}) +o_p(1). \end{aligned}$$
(A.34)

By applying law of large numbers twice, it can be validated that

$$\begin{aligned} n^{-2}\sum _{i=1}^n\sum _{j\ne i}S(\xi _i){\dot{g}}_{\theta }(\xi _j,\theta _0) \lambda _b(V_i-V_j)=\mathrm{E}[S(\xi ){\dot{g}}_{\theta }(\xi ,\theta _0)f_v(V)]+o_p(1). \end{aligned}$$

By Lemma 1 with \(\rho =q/4,\) \(n^{1/2}b_n^{q/4}({\hat{\theta }}_{n}-\theta _0)=\varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]+o_p(1).\) Combining the above two results, it yields

$$\begin{aligned} D_{n3}^{[3]} = -2 \mathrm{E}[S(\xi ){\dot{g}}_{\theta }(\xi ,\theta _0)^\top f_v(V)]\varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]+o_p(1). \end{aligned}$$
(A.35)

For \(D_{n3}^{[4]},\) we can validate that

$$\begin{aligned} D_{n3}^{[4]}= & {} 2n^{-1/2}b_n^{q/4}\sum _{s=1}^n{\dot{g}}_{\xi }(\xi _s,{\theta }_{0})^\top (\xi _s-{\tilde{\xi }}_s)\left\{ n^{-1}\sum _{i=1,i\ne s}^n S(\xi _i) \lambda _{b_n}(V_{i,s})\right\} + o_p(1)\nonumber \\= & {} 2n^{-1/2}b_n^{q/4}\sum _{s=1}^n{\dot{g}}_{\xi }(\xi _s,{\theta }_{0})^\top (\xi _s-{\tilde{\xi }}_s) E\{ S(\xi _i) |V=V_s\} + o_p(1)\nonumber \\= & {} O_p\left( b_n^{q/4}\right) = o_p(1). \end{aligned}$$
(A.36)

Therefore, with (A.31)–(A.36), we have

$$\begin{aligned} D_{n3}= & {} -2 \mathrm{E}[S(\xi ){\dot{g}}_{\theta }(\xi ,\theta _0)^\top f_v(V)]\varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )]\nonumber \\&\quad -\,2n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j\ne i}\varepsilon _i\varDelta _{\theta _0}(\xi _j,{\tilde{\xi }}_j) \lambda _{b_n}(V_{i,j}) + o_p(1). \end{aligned}$$
(A.37)

From (A.23), (A.24), (A.30) and (A.37), we can validate that

$$\begin{aligned} T_n^{\mathtt {U}}= & {} n^{-1}b_n^{q/2}\sum _{i=1}^n\sum _{j\ne i} \left\{ \varepsilon _i- \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i)\right\} \left\{ \varepsilon _j- \varDelta _{\theta _0}(\xi _j,{\tilde{\xi }}_j)\right\} \lambda _{b_n}(V_{i,j})\nonumber \\&\quad + \,\mathrm{E}[\mu (\xi )^2 f_v(V)] +o_p(1), \end{aligned}$$
(A.38)

where \(\mu (\xi ) = S(\xi )-{\dot{g}}_{\theta }(\xi ,\theta _0)^\top \varSigma _0^{-1}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )].\) Since the first term of (A.38) is a degenerated U-statistic, by similar method of Li and Wang (1998), we can validate that the conditions of Theorem 1 of Hall (1984) hold for \(T_n^{\mathtt {U}}.\) Thus we have proved the asymptotic normality of \(T_n^{\mathtt {U}}.\)

Proof of Theorem 6

Recall that \(\varphi _n(v)=n^{-1/2}\sum \nolimits _{i=1}^n\{ Y_i-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\}{\mathbf {1}}(V_i\le v)\) and the EP based test \( T^{\mathtt {EP}}_n=\int \{\varphi _n(v)\}^2dF_n(v).\) Then we have

$$\begin{aligned} \varphi _n(v)= & {} n^{-1/2}\sum \limits _{i=1}^n\{Y_i-g(\xi _i,\theta _0)\}{\mathbf {1}}(V_i\le v)\nonumber \\&\quad +\,n^{-1/2}\sum \limits _{i=1}^n\{g(\xi _i,\theta _0)-g({\hat{\xi }}_n(V_i),{\hat{\theta }}_{n})\}{\mathbf {1}}(V_i\le v)\nonumber \\=: & {} G_{n1}+ G_{n2}. \end{aligned}$$
(A.39)

Under the alternative hypothetical model with \(\rho =0\) in (3.1), that is \(Y=g(\xi ,\theta _0)+n^{-1/2}S(\xi )+\varepsilon ,\) we have

$$\begin{aligned} G_{n1}= & {} n^{-1/2}\sum \limits _{i=1}^n \varepsilon _i {\mathbf {1}}(V_i\le v)+n^{-1}\sum \limits _{i=1}^n S(\xi _i) {\mathbf {1}}(V_i\le v)\nonumber \\= & {} n^{-1/2}\sum \limits _{i=1}^n \varepsilon _i {\mathbf {1}}(V_i\le v)+\mathrm{E}[S(\xi ) {\mathbf {1}}(V\le v)] +o_p(1). \end{aligned}$$
(A.40)

For \(G_{n2},\) by Taylor expansion and Condition C2, we have

$$\begin{aligned} G_{n2}= & {} n^{-1/2}\sum \limits _{i=1}^n {\dot{g}}_{\theta }(\xi _i,\theta _0)^\top (\theta _0-{\hat{\theta }}_{n} ){\mathbf {1}}(V_i\le v)\nonumber \\&\quad +\, n^{-1/2}\sum \limits _{i=1}^n {\dot{g}}_{\xi }(\xi _i,\theta _0)^\top (\xi _i-{\hat{\xi }}_n(V_i) ){\mathbf {1}}(V_i\le v)+o_p(1)\nonumber \\=: & {} G_{n2}^{[1]}+ G_{n2}^{[2]}+o_p(1). \end{aligned}$$
(A.41)

Lemma 1 shows that \( n^{1/2}({\hat{\theta }}_{n}-\theta _0)=n^{-1/2}\varSigma _0^{-1} \sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\left\{ \varepsilon _i- \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i)\right\} +\varSigma _0^{-1}\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )\}+o_p(1) \) under (3.1) with \(\rho =0.\) Thus we have \(n^{1/2}({\hat{\theta }}_{n}-\theta _0)=O_p(1).\) Further by law of large numbers, it yields

$$\begin{aligned} G_{n2}^{[1]}= & {} \left\{ n^{-1}\sum \limits _{i=1}^n {\dot{g}}_{\theta }(\xi _i,\theta _0)^\top {\mathbf {1}}(V_i\le v)\right\} n^{1/2}(\theta _0-{\hat{\theta }}_{n} )\nonumber \\= & {} -\,n^{-1/2}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)^\top {\mathbf {1}}(V\le v)]\varSigma _0^{-1} \sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\left\{ \varepsilon _i- \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i)\right\} \nonumber \\&\quad -\,\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)^\top {\mathbf {1}}(V\le v)]\varSigma _0^{-1}\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )\}+o_p(1). \end{aligned}$$
(A.42)

For \(G_{n2}^{[2]},\) similar to prove (A.7), we can prove

$$\begin{aligned} G_{n2}^{[2]}= & {} -n^{-1/2}\sum \limits _{i=1}^n \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i){\mathbf {1}}(V_i\le v)+o_p(1). \end{aligned}$$
(A.43)

From the results (A.41)–(A.43), we have

$$\begin{aligned} G_{n2}= & {} -\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)^\top {\mathbf {1}}(V\le v)\}\varSigma _0^{-1}\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )\}\nonumber \\&\quad -\,n^{-1/2}\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)^\top {\mathbf {1}}(V\le v)]\varSigma _0^{-1} \sum _{i=1}^n{\dot{g}}_{\theta }(\xi _i,\theta _0)\left\{ \varepsilon _i- \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i)\right\} \nonumber \\&\quad -\,n^{-1/2}\sum \limits _{i=1}^n \varDelta _{\theta _0}(\xi _i,{\tilde{\xi }}_i){\mathbf {1}}(V_i\le v)+o_p(1). \end{aligned}$$
(A.44)

From the definition of \(\mathtt {IF}_{v}^{\mathtt {EP}}(\varepsilon , \xi , {\tilde{\xi }},V),\) (A.39), (A.40) and (A.44), we have

$$\begin{aligned} \varphi _n(v)= & {} n^{-1/2}\sum \limits _{i=1}^n \mathtt {IF}_{v}^{\mathtt {EP}}(\varepsilon _i, \xi _i, {\tilde{\xi }}_i, V_i)+\mathrm{E}[S(\xi ) {\mathbf {1}}(V\le v)]\\&\quad -\,\mathrm{E}[{\dot{g}}_{\theta }(\xi ,\theta _0)^\top {\mathbf {1}}(V\le v)]\varSigma _0^{-1}\mathrm{E}\{{\dot{g}}_{\theta }(\xi ,\theta _0)S(\xi )\}+o_p(1). \end{aligned}$$

Note that the function class \(\{{\mathbf {1}}(V\le v): v \in R^q \}\) is a V–C class since \({\mathbf {1}}(V\le v)\) is the product of q univariate indicator functions. Further by Lemma 2.6.18 of van der Vaart and Wellner (1996), we can obtain that the function class \(\{\mathtt {IF}_{v}^{\mathtt {EP}}(\varepsilon , \xi , {\tilde{\xi }}, V_i): v \in R^q \}\) is a V–C class. By Theorem 2.6.8 of van der Vaart and Wellner (1996), we can prove the weak convergence of \(\mathtt {IF}_{v}^{\mathtt {EP}}(\varepsilon , \xi , {\tilde{\xi }},V).\) The result of \(T^{\mathtt {EP}}_n \) can be proved from Theorem 1.11.1 of van der Vaart and Wellner (1996). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Luo, D., Zhou, X. et al. Comparative studies on the adequacy check of parametric measurement error models with auxiliary variable. Stat Papers 62, 1723–1751 (2021). https://doi.org/10.1007/s00362-019-01154-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01154-3

Keywords

Navigation