Skip to main content
Log in

Goodness-of-fit test of copula functions for semi-parametric univariate time series models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we propose a goodness-of-fit test, named pseudo “in-and-out-of-likelihood” (PIOL) ratio test, to check for misspecification in semi-parametric copula models for univariate time series. The proposed test extends the idea of the IOS test by Presnell and Boos (J Am Stat Assoc 99:216–227, 2004) and PIOS test by Zhang et al. (J Econom, 193:215–233, 2016), which are problematic for direct application to univariate time series. The PIOL test provides an integrated framework for both independent data and time series data. In addition, an approximation method is implemented to alleviate the computational burden of calculating the test statistics. Asymptotic properties of the proposed test statistics are discussed. The finite-sample performance is examined through simulation studies. We also demonstrate the proposed method through the analysis of a time series of daily transactions of Apple trade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Banerjee A, Dolado JJ, Galbraith JW, Hendry D (1993) Co-integration, error correction, and the econometric analysis of non-stationary data. Oxford, New York

    MATH  Google Scholar 

  • Beare BK (2010) Copulas and temporal dependence. Econometrica 78:395–410

    MathSciNet  MATH  Google Scholar 

  • Beare BK (2012) Archimedean copulas and temporal dependence. Econom Theory 28:1165–1185

    MathSciNet  MATH  Google Scholar 

  • Beare BK, Seo J (2015) Vine copula specifications for stationary multivariate Markov chains. J Time Ser Anal 36:228–246

    MathSciNet  MATH  Google Scholar 

  • Berg D, Bakken H (2005) A goodness-of-fit test for copulae based on the probability integral transform. Technical Report SAMBA/41/05, Norsk REgnesentral, Oslo

  • Brent P (2002) Algorithms for minimization without derivatives. Dover Publications, New York

    MATH  Google Scholar 

  • Breymann W, Dias A, Embrechts P (2003) Dependence structures for multivariate high-frequency data in finance. Quant Financ 3:1–14

    MathSciNet  MATH  Google Scholar 

  • Chen X, Fan Y (2006a) Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. J Econom 135:125–154

    MathSciNet  MATH  Google Scholar 

  • Chen X, Fan Y (2006b) Estimation of copula-based semiparametric time series models. J Econom 130:307–335

    MathSciNet  MATH  Google Scholar 

  • Chen X, Wu WB, Yi Y (2009) Efficient estimation of copula-based semiparametric markov models. Ann Stat 37:4214–4253

    MathSciNet  MATH  Google Scholar 

  • Clayton D (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65:141–151

    MathSciNet  MATH  Google Scholar 

  • Craiu R, Craiu M (2008) On the choice of parametric families of copulas. Adv Appl Stat 10:25–40

    MathSciNet  MATH  Google Scholar 

  • Darsow WF, Nguyen B, Olsen ET (1992) Copulas and Markov processes. Ill J Math 36:600–642

    MathSciNet  MATH  Google Scholar 

  • DasGupta A (2008) Asymptotic theory of statistics and probability. Springer, New York

    MATH  Google Scholar 

  • de la Peña VH, Ibragimov R, Sharakhmetov S (2006) Characterizations of joint distributions, copulas, information, dependence and decoupling, with applications to time series. Lect Notes Monogr Ser 49:183–209

    MathSciNet  MATH  Google Scholar 

  • De Luca G, Zuccolotto P (2017) Dynamic tail dependence clustering of financial time series. Stat Pap 58:641–657

    MathSciNet  MATH  Google Scholar 

  • Dehling H (2006) Limit theorems for dependent U-statistics. In: Bertail P, Soulier P, Doukhan P (eds) Dependence in probability and statistics, vol 187. Lecture notes in statistics. Springer, New York, pp 65–86

    MATH  Google Scholar 

  • Demarta S, McNeil A (2005) The t copula and related copulas. Int Stat Rev 73:111–129

    MATH  Google Scholar 

  • Dobrić J, Schmid F (2007) A goodness of fit test for copulas based on Rosenblatt’s transformation. Comput Stat Data Anal 51:4633–4642

    MathSciNet  MATH  Google Scholar 

  • Domowitz I, White H (1982) Misspecified models with dependent observations. J Econom 20:35–58

    MathSciNet  MATH  Google Scholar 

  • Durante F (2009) Construction of non-exchangeable bivariate distribution functions. Stat Pap 50:383–391

    MathSciNet  MATH  Google Scholar 

  • Emura T, Pan CH (2017) Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach. Stat Pap. https://doi.org/10.1007/s00362-017-0947-z

    Article  MATH  Google Scholar 

  • Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring. Comput Stat Data Anal 54:3033–43

    MathSciNet  MATH  Google Scholar 

  • Emura T, Long TH, Sun LH (2017) R routines for performing estimation and statistical process control under copula-based time series models. Commun Stat Simul Comput 46:3067–87

    MathSciNet  MATH  Google Scholar 

  • Fermanian JD (2005) Goodness-of-fit tests for copulas. J Multivar Anal 95:119–152

    MathSciNet  MATH  Google Scholar 

  • Genest C (1987) Frank’s family of bivariate distributions. Biometrika 82:543–552

    MathSciNet  MATH  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88:1034–1043

    MathSciNet  MATH  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12:347–368

    Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44:199–213

    MathSciNet  MATH  Google Scholar 

  • Gilbert P, Varadhan R (2019) numDeriv: accurate numerical derivatives. R package version. https://CRAN.R-project.org/package=numDeriv

  • Hofert M, Kojadinovic I, Maechler M, Yan J (2018) copula: multivariate dependence with copulas. R package version. https://CRAN.R-project.org/package=copula

  • Huang W, Prokhorov A (2014) A goodness-of-fit test for copulas. Econom Rev 33:751–771

    MathSciNet  Google Scholar 

  • Huang XW, Emura T (2019) Model diagnostic procedures for copula-based Markov chain models for statistical process control. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2019.1602647

    Article  Google Scholar 

  • Ibragimov R (2009) Copula-based characterizations for higher order Markov processes. Econom Theory 25:819–846

    MathSciNet  MATH  Google Scholar 

  • Ibragimov R, Lentzas G (2017) Copulas and long memory. SSRN Electron J. https://doi.org/10.2139/ssrn.1185822

    Article  MATH  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapmann & Hall, London

    MATH  Google Scholar 

  • Kendall M (1938) A new measure of rank correlation. Biometrika 30:81–89

    MATH  Google Scholar 

  • Kim B, Lee S (2013) Robust estimation for copula parameter in SCOMDY models. J Time Ser Anal 34:302–314

    MathSciNet  MATH  Google Scholar 

  • Longla, Martial (2015) On mixtures of copulas and mixing coefficients. J Multivar Anal 139:259–265

    MathSciNet  MATH  Google Scholar 

  • Malevergne Y, Sornette D (2003) Testing the Gaussian copula hypothesis for financial assets dependences. Quant Financ 3:231–250

    MathSciNet  MATH  Google Scholar 

  • Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Springer, London

    MATH  Google Scholar 

  • Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    MathSciNet  MATH  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Panchenko V (2005) Goodness-of-fit test for copulas. Phys A Stat Mech Appl 355:176–182

    MathSciNet  Google Scholar 

  • Patton AJ (2011) Copula methods for forecasting multivariate time series. In: Elliott G, Granger C, Timmermann A (eds) Handbook of economic forecasting, vol 2. Elsevier, Oxford

    Google Scholar 

  • Presnell B, Boos DD (2004) The IOS test for model misspecification. J Am Stat Assoc 99:216–227

    MathSciNet  MATH  Google Scholar 

  • Quessy JF (2016) Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series. Stat Pap. https://doi.org/10.1007/s00362-016-0846-8

    Article  MATH  Google Scholar 

  • Rémillard B, Papageorgiou N, Soustra F (2012) Copula-based semiparametric models for multivariate time series. J Multivar Anal 110:30–42

    MathSciNet  MATH  Google Scholar 

  • Scaillet O (2007) Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters. J Multivar Anal 98:533–543

    MathSciNet  MATH  Google Scholar 

  • ŞErban M, Brockwell A, Lehoczky J, Srivastava S (2007) Modelling the dynamic dependence structure in multivariate financial time series. J Time Ser Anal 28:763–782

    MathSciNet  MATH  Google Scholar 

  • Smith MS (2015) Copula modelling of dependence in multivariate time series. Int J Forecast 31:815–833

    Google Scholar 

  • Trapletti A, Hornik K (2019) tseries: time series analysis and computational finance. R package version 0.10-47. https://CRAN.R-project.org/package=tseries

  • Wang W, Wells M (2000) Model selection and semiparametric inference for bivariate failure-time data. J Am Stat Assoc 449:62–72

    MathSciNet  MATH  Google Scholar 

  • White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1–25

    MathSciNet  MATH  Google Scholar 

  • Wooldridge JM (1994) Estimation and inference for dependent processes. Handb Econom 4:2639–2738

    MathSciNet  Google Scholar 

  • Wong SF, Tong H, Siu TK, Lu Z (2017) A new multivariate nonlinear time series model for portfolio risk measurement: the threshold copula-based TAR approach. J Time Ser Anal 38:243–265

    MathSciNet  MATH  Google Scholar 

  • Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Softw 21:1–21

    Google Scholar 

  • Zhang S, Okhrin O, Zhou QM, Song P (2016) Goodness-of-fit test for specification of semiparametric copula dependence models. J Econom 193:215–233

    MathSciNet  MATH  Google Scholar 

  • Zhang S, Song P, Shi D, Zhou QM (2012) Information ratio test for model misspecification on parametric structures in stochastic diffusion models. Comput Stat Data Anal 56:3975–3987

    MathSciNet  MATH  Google Scholar 

  • Zhou QM, Song P, Thompson ME (2012) Information ratio test for model misspecification in quasi-likelihood inference. J Am Stat Assoc 107:205–213

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian M. Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 327 KB)

Supplementary material 2 (csv 25 KB)

Appendix

Appendix

1.1 Appendix I: Proof of theorems in Section 3

Proof of Theorem 1

First, by condition (A1), applying law of large number for stationary ergodic time series (DasGupta 2008), we have

$$\begin{aligned} \frac{1}{n}\sum _{t=1}^{n} \ddot{\ell }(U_{t-1},U_{t}; \theta ^*) {\mathop {\rightarrow }\limits ^{pr}} {\mathcal {S}}, \ \ \ n\rightarrow \infty . \end{aligned}$$

By conditions (A2), we have

$$\begin{aligned}&\left\| \ddot{\ell }({\hat{U}}_{t-1}, {\hat{U}}_{t}, {\hat{\theta }}) - \ddot{l} (U_{t-1},U_{t}; \theta ^*)\right\| \\&\quad \le \left\| \ddot{\ell }({\hat{U}}_{t-1}, {\hat{U}}_{t}, {\hat{\theta }}) - \ddot{\ell }({\hat{U}}_{t-1}, {\hat{U}}_{t}, \theta ^*)\right\| + \left\| \ddot{\ell }({\hat{U}}_{t-1}, {\hat{U}}_{t}, \theta ^*)- \ddot{l} (U_{t-1},U_{t}; \theta ^*)\right\| \\&\quad \le \sup _{(G,\theta )\in \mathcal F_{\delta }}\Vert \sum _{i,j=1}^{p}\frac{\partial }{\partial \theta }\ddot{\ell }( U_{t-1},U_{t}, \theta )\Vert \Vert {\hat{\theta }}-\theta ^*\Vert \\&\qquad + \sup _{(G,\theta )\in {\mathcal {F}}_{\delta }}\Vert \sum _{i = 1}^{2}\ddot{l}_i( U_{t-1},U_{t}, \theta )\Vert \Vert G_n - G^*\Vert _{\infty }. \end{aligned}$$

Since \(\Vert {\hat{\theta }}-\theta ^*\Vert {\mathop {\rightarrow }\limits ^{pr}} 0 \) and \(\Vert G_n - G^*\Vert _{\infty } {\mathop {\rightarrow }\limits ^{pr}} 0\), as \(n\rightarrow \infty \), we have

$$\begin{aligned} S_n= & {} -\frac{1}{n}\sum _{k = 1}^{n}\ddot{\ell }({\hat{U}}_{t-1}, {\hat{U}}_{t};{\hat{\theta }}){\mathop {\rightarrow }\limits ^{pr}}{\mathcal {S}}, \ \ \hbox {as} \ \ n\rightarrow \infty . \end{aligned}$$

Following similar arguments as above, we also can prove that

$$\begin{aligned} V_n= & {} \frac{1}{n}\sum _{k = 1}^{n}{\dot{\ell }}({\hat{U}}_{t-1}, {\hat{U}}_{t};{\hat{\theta }})\dot{l}^T({\hat{U}}_{t-1}, {\hat{U}}_{t};{\hat{\theta }})^{T}{\mathop {\rightarrow }\limits ^{pr}}{\mathcal {V}}, \ \ \hbox {as} \ \ n\rightarrow \infty . \end{aligned}$$

It follows from Assumption (A3) and Slutsky’s Theorem that

$$\begin{aligned} R = tr\left\{ S_n^{-1}V_n\right\} {\mathop {\rightarrow }\limits ^{pr}}tr\left\{ {\mathcal {S}}^{-1}{\mathcal {V}}\right\} , \ \ \hbox {as} \ \ n\rightarrow \infty . \end{aligned}$$

\(\square \)

To prove Theorem 2, we need the following Lemma 1, which gives the expansion of the estimated negative sensitivity matrix \(S_n\) and estimated variability matrix \(V_n\). Let \(S_n({\hat{U}}_{t-1}, {\hat{U}}_{t}; {\hat{\theta }})_{ij}\) denote the (ij)th element of \(S_n\), and \(V_n({\hat{U}}_{t-1}, {\hat{U}}_{t}; {\hat{\theta }})_{ij}\) denote the (ij)th element of \(V_n\).

Lemma 1: Under the conditions (A2)–(A3) and (B1)–(B3), we have

$$\begin{aligned} S_n({\hat{U}}_{t-1}, {\hat{U}}_{t}; {\hat{\theta }})_{ij}= & {} \frac{1}{n}\sum _{t=1}^{n} \left[ \ddot{\ell }( U_{t-1},U_{t}, \theta ^*)_{ij} + W_S( U_{t-1},U_{t})_{ij} \right] \nonumber \\&+\,\frac{1}{n}\sum _{t=1}^{n}C^1_{ij}{{\mathcal {S}}}^{-1}\left[ \dot{\ell }( U_{t-1},U_{t}, \theta ^*)+W( U_{t-1},U_{t})\right] + o_p(n^{-1/2})\nonumber \\\triangleq & {} \frac{1}{n}\sum _{t=1}^{n}h_S(U_{t-1},U_{t}, \theta ^*)_{ij} + o_p(n^{-1/2}), \end{aligned}$$
(8)

and

$$\begin{aligned} V_n({\hat{U}}_{t-1}, {\hat{U}}_{t}; {\hat{\theta }})_{ij}= & {} \frac{1}{n}\sum _{t=1}^{n} \left[ {\dot{\ell }}( U_{t-1},U_{t}, \theta ^*)_i{\dot{\ell }}( U_{t-1},U_{t}, \theta ^*)_j + W_V( U_{t-1},U_{t})_{ij}\right] \nonumber \\&+\,\frac{1}{n}\sum _{t=1}^{n}C^2_{ij}{{\mathcal {S}}}^{-1}\left[ \dot{\ell }( U_{t-1},U_{t}, \theta ^*)+W( U_{t-1},U_{t}))\right] + o_p(n^{-1/2})\nonumber \\\triangleq & {} \frac{1}{n}\sum _{t=1}^{n}h_V(U_{t-1},U_{t}, \theta ^*)_{ij} + o_p(n^{-1/2}), \end{aligned}$$
(9)

where \(C^1_{ij} \triangleq \mathbb {E}_{0}\left[ \frac{\partial \ddot{\ell }\left\{ U_0,U_1 ; \theta ^{*}\right\} _{i j}}{\partial \theta ^{T}}\right] \), \(C^2_{ij} \triangleq 2\mathbb {E}_{0}\left[ \dot{\ell }( U_{t-1},U_{t}, \theta ^*)_i\frac{\partial {\dot{\ell }}\left\{ U_0,U_1 ; \theta ^{*}\right\} _{j}}{\partial \theta ^{T}}\right] \), and

$$\begin{aligned} W( U_{t-1},U_{t})= & {} \int _{0}^{1}\int _{0}^{1}Z_t(v_1,v_2)c(v_1,v_2;\theta ^*)dv_1dv_2, \\ W_s( U_{t-1},U_{t})= & {} \int _{0}^{1}\int _{0}^{1}Z^s_t(v_1,v_2)c(v_1,v_2;\theta ^*)dv_1dv_2,\\ W_v( U_{t-1},U_{t})= & {} \int _{0}^{1}\int _{0}^{1}Z^v_t(v_1,v_2)c(v_1,v_2;\theta ^*)dv_1dv_2, \end{aligned}$$

with

$$\begin{aligned} Z_t(v_1,v_2)= & {} \left[ I\{U_{t-1}\le v_1\}-v_1\right] \dot{l}_1(v_1,v_2;\theta ^*)+\left[ I\{U_{t}\le v_2\}-v_2\right] \dot{l}_2(v_1,v_2;\theta ^*),\\ Z^s_t(v_1,v_2)= & {} \left[ I\{U_{t-1}\le v_1\}-v_1\right] \ddot{l}_1(v_1,v_2;\theta ^*)+\left[ I\{U_{t}\le v_2\}-v_2\right] \ddot{l}_2(v_1,v_2;\theta ^*),\\ Z^v_t(v_1,v_2)= & {} \left[ I\{U_{t-1}\le v_1\}-v_1\right] \dot{l}_1(v_1,v_2;\theta ^*)\dot{l}(v_1,v_2;\theta ^*)^T\\&+\,\left[ I\{U_{t}\le v_2\}-v_2\right] \dot{l}_2(v_1,v_2;\theta ^*)\dot{l}(v_1,v_2;\theta ^*)^T. \end{aligned}$$

Proof of Lemma 1

First, we prove Eq. (8). Denote the pathwise derivative of \(\ddot{\ell }( G(Y_{t-1}), G(Y_{t}); \theta ^*) \) w.r.t. G in the direction of dG as \(\nabla \ddot{\ell }( G(Y_{t-1}),G(Y_{t}); \theta ^*)[dG]\), where \(dG = G-G^*\). Following similar arguments of Proposition 4.3 in Chen and Fan (2006b), we have

$$\begin{aligned} \nabla \ddot{\ell }( U_{t-1},U_{t}; \theta ^*)[dG]= & {} \frac{1}{n}\sum _{s=1}^{n}\left\{ \ddot{l}_1( U_{t-1},U_{t})[I\{U_{s-1}\le U_{t-1}\} -U_{t-1}]\right. \\&\left. +\,\ddot{l}_2( U_{t-1},U_{t})[I\{U_s\le U_{t}\} -U_{t}]\right\} . \end{aligned}$$

Expanding \(\ddot{\ell }( U_{t-1},U_{t};\theta ^*)\) around \(\theta ^*\) and \(G^*\) in the direction dG, we obtain

$$\begin{aligned} S_n({\hat{U}}_{t-1}, {\hat{U}}_{t};{\hat{\theta }})_{ij}= & {} \frac{1}{n}\sum _{t = 1}^{n}\ddot{\ell }( U_{t-1},U_{t};\theta ^*)_{ij}+ \frac{1}{n}\sum _{t = 1}^{n}\frac{\partial }{\partial \theta ^{T}}\ddot{\ell }(U_{t-1},U_{t};\theta ^*)_{ij}\left( {\hat{\theta }}-\theta ^*\right) \\&+\,\frac{1}{n}\sum _{t = 1}^{n}\nabla \ddot{\ell }( U_{t-1},U_{t})[dG]_{ij} + o_p(n^{-1/2}). \end{aligned}$$

By Proposition 4.3 in Chen and Fan (2006b), we have

$$\begin{aligned} {\hat{\theta }} - \theta ^* = \frac{1}{n}\sum _{t=1}^{n}{\mathcal S}^{-1}\left[ {\dot{\ell }}( U_{t-1},U_{t};\theta ^*)+ W( U_{t-1},U_{t})\right] + o_p(n^{-1/2}). \end{aligned}$$

By condition (B3), employing similar arguments in Theorem 1, we have

$$\begin{aligned} \frac{1}{n}\sum _{t = 1}^{n}\frac{\partial }{\partial \theta }\ddot{\ell }(U_{t-1},U_{t};\theta )\rightarrow C^1_{ij},\ \ \ \hbox {as}\ \ n\rightarrow \infty . \end{aligned}$$

By proposition 4.3 in Chen and Fan (2006b), we obtain

$$\begin{aligned} \nabla \ddot{\ell }( U_{t-1},U_{t}; \theta ^*)[dG]= & {} \int _0^{1}\int _0^1\left\{ \ddot{l}_1(v_1,v_2)[I\{U_{t-1}\le v_1\} -v_1]\right\} c(v_1,v_2;\theta ^*)dv_1dv_2 \\&+\,\int _0^{1}\int _0^1\left\{ \ddot{l}_2(v_1,v_2)[I\{ U_{t-1},U_{t}\le v_2\} -v_2]\right\} \\&\quad \times \,c(v_1,v_2;\theta ^*)dv_1dv_2 + o_p(n^{-1/2}). \end{aligned}$$

Hence, we have

$$\begin{aligned} S_n({\hat{U}}_{t-1}, {\hat{U}}_{t}; {\hat{\theta }})_{ij} = \frac{1}{n}\sum _{t=1}^{n}h_S(U_{t-1},U_{t}, \theta ^*)_{ij} + o_p(n^{-1/2}). \end{aligned}$$

Applying similar arguments as above, we can prove

$$\begin{aligned} V_n({\hat{U}}_{t-1}, {\hat{U}}_{t}; {\hat{\theta }})_{ij} = \frac{1}{n}\sum _{t=1}^{n}h_S(U_{t-1},U_{t}, \theta ^*)_{ij} + o_p(n^{-1/2}). \end{aligned}$$

\(\square \)

Proof of Theorem 2

Under the null hypothesis of the copula model being correctly specified, the Bartlett identity holds, hence, we have \({{\mathcal {S}}} = {{\mathcal {V}}}\), i.e. \({{\mathcal {S}}}^{-1}{{\mathcal {V}}} =I_p\). The test statistic R given in Eq. (7) can be represented as follows:

$$\begin{aligned} \sqrt{n}\left( R-p\right)= & {} \sqrt{n}\hbox {tr}\left\{ S_n^{-1}V_n - I_p\right\} =\sqrt{n}\hbox {tr} \left\{ S_n^{-1}V_n - {\mathcal S}^{-1}{{\mathcal {V}}}\right\} \\= & {} \hbox {tr}\left\{ {{\mathcal {S}}}^{-1}\sqrt{n}\left( V_n - {\mathcal V}\right) \right\} + \hbox {tr}\left\{ {{\mathcal {S}}}^{-1}V_n{\mathcal S}^{-1}\sqrt{n}\left( {{\mathcal {S}}}-S_n\right) \right\} + o_p(1). \end{aligned}$$

By Lemma 1, we have

$$\begin{aligned} \sqrt{n}\left\{ S_n - {{\mathcal {S}}}\right\}= & {} \frac{1}{\sqrt{n}}\sum \limits _{t = 1}^{n}\left\{ h_S( U_{t-1},U_{t};\theta ^*) - {{\mathcal {S}}}\right\} +o_p(1) \end{aligned}$$

and

$$\begin{aligned} \sqrt{n}\left( V_n - {{\mathcal {V}}}\right)= & {} \frac{1}{\sqrt{n}}\sum \limits _{t = 1}^{n}\left\{ h_V( U_{t-1},U_{t};\theta ^*)-{{\mathcal {V}}}\right\} +o_p(1). \end{aligned}$$

Thus, we can write \(\sqrt{n}\left( R-p\right) = \frac{1}{\sqrt{n}}\sum \limits _{t = 1}^{n} h_R(U_{t-1},U_{t};\theta ^*)\), where

$$\begin{aligned} h_R(U_{t-1},U_{t};\theta ^*)= & {} \hbox {tr}\left\{ {\mathcal S}^{-1}\left[ h_V( U_{t-1},U_{t};\theta ^*)-{\mathcal V}\right] \right\} \\&-\,\hbox {tr}\left\{ {{\mathcal {S}}}^{-1}V_n{\mathcal S}^{-1}\left[ h_S( U_{t-1},U_{t};\theta ^*) - {\mathcal S}\right] \right\} . \end{aligned}$$

Hence, by condition (B3) and central limit theorem for time series, we obtain

$$\begin{aligned} \sqrt{n}\left( R- p\right) {\mathop {\rightarrow }\limits ^{d}} N(0,\sigma _R^2), \end{aligned}$$

where asymptotic variance \(\sigma _R^2 = Var\left[ h_R(U_{t-1},U_{t};\theta ^*)\right] \), which can be computed consistently via the parametric bootstrap method in Sect. 4.2. \(\square \)

To prove Theorem 3, we need the following Lemma 2, which states the limiting difference between the parameter estimates \({\hat{\theta }}\) and \({\hat{\theta }}_{-t}\) or \(\tilde{\theta }_{-t}\).

Lemma 2 : Under the conditions (B3), we have

$$\begin{aligned}&\sup _{1\le t\le n}\Vert {\hat{\theta }}-{\hat{\theta }}_{-t}\Vert = O_p(n^{-1})\quad \text {and} \end{aligned}$$
(10)
$$\begin{aligned}&\sup _{1\le t\le n}\Vert {\hat{\theta }}-{\tilde{\theta }}_{-t}\Vert = O_p(n^{-1}). \end{aligned}$$
(11)

Proof of Lemma 2

First, we prove Eq. (10). By Eq. (3), \({\hat{\theta }}_{-t}\) solves the following equation

$$\begin{aligned} 0 = \sum _{s\ne t, s=1}^{n}{\dot{\ell }}({\hat{U}}_{s-1},{\hat{U}}_{s}; {\hat{\theta }}_{-t}). \end{aligned}$$

Expanding \({\dot{\ell }}({\hat{U}}_{s-1},{\hat{U}}_{s};{\hat{\theta }}_{-t})\) around \({\hat{\theta }}\) leads to

$$\begin{aligned} 0 = \sum _{s\ne t, s=1}^{n}{\dot{\ell }}({\hat{U}}_{s-1},{\hat{U}}_{s};{\hat{\theta }}_{-t}) = -{\dot{\ell }}({\hat{U}}_{t-1},{\hat{U}}_{t};{\hat{\theta }}) + \sum _{s\ne t, s=1}^{n}\ddot{\ell }({\hat{U}}_{s-1},{\hat{U}}_{s};{\check{\theta }}_{-t})({\hat{\theta }}_{-t} - {\hat{\theta }}), \end{aligned}$$

where \({\check{\theta }}_{-t}\) lies between \({\hat{\theta }}\) and \({\hat{\theta }}_{-t}\). It follows that

$$\begin{aligned} {\hat{\theta }}_{-t} - {\hat{\theta }} = \left\{ \frac{1}{n}\sum _{s\ne t, s=1}^{n}\ddot{l}\left( {\hat{U}}_{s-1},{\hat{U}}_{s};{\tilde{\theta }}_{-t}\right) \right\} ^{-1} \frac{1}{n}\dot{\ell }({\hat{U}}_{t-1},{\hat{U}}_{t};{\hat{\theta }}). \end{aligned}$$

By conditions (B3),

$$\begin{aligned} \sup _{1\le t\le n}\frac{1}{n}\left\| {\dot{\ell }}({\hat{U}}_{t-1}, {\hat{U}}_{t};{\hat{\theta }})\right\| \le \frac{1}{n} \sup _{1\le t\le n}\sup _{(\theta ,G)\in {{\mathcal {F}}}_{\delta }}\left\| {\dot{\ell }}( U_{t-1},U_{t};\theta )\right\| =O_p(n^{-1}). \end{aligned}$$

In addition, by condition (B3), using the similar arguments in the proof of Theorem 1, we can show

$$\begin{aligned} \frac{1}{n}\sum _{s\ne t, s=1}^{n}\ddot{\ell }({\hat{U}}_{s-1},{\hat{U}}_{s};{\check{\theta }}_{-t}) {\mathop {\rightarrow }\limits ^{pr}} {{\mathcal {S}}}. \end{aligned}$$

Hence,

$$\begin{aligned} \sup _{1\le t\le n}\Vert {\hat{\theta }}_{-t} - {\hat{\theta }} \Vert\le & {} \sup _{1\le t\le n}\left\| \left\{ \frac{1}{n}\sum _{s\ne t, s=1}^{n}\ddot{\ell }({\hat{U}}_{s-1},{\hat{U}}_{s};{\check{\theta }}_{-t}) \right\} ^{-1}\right\| \\&\quad \times \,\sup _{1\le t\le n}\left\| \frac{1}{n}\sum _{t = 1}^{n}{\dot{\ell }}({\hat{U}}_{t-1},{\hat{U}}_{t};{\hat{\theta }})\right\| = O_p(n^{-1}). \end{aligned}$$

To approximate \({\hat{\theta }}_{-t}\), shown in Eq. (5), we use \({\tilde{\theta }}_{-t}\) which is defined as

$$\begin{aligned} {\tilde{\theta }}_{-t} = {\hat{\theta }}+\left\{ \frac{1}{n}\sum _{s = 1}^{n}\ddot{l}\left( {\hat{U}}_{s-1},{\hat{U}}_{s};{\hat{\theta }}\right) \right\} ^{-1} \frac{1}{n}{\dot{\ell }}({\hat{U}}_{t-1},{\hat{U}}_{t};{\hat{\theta }}). \end{aligned}$$

By the similar arguments above, we also can show that

$$\begin{aligned} \sup _{1\le t\le n}\left\| {\tilde{\theta }}_{-t} - {\hat{\theta }}\right\| = O_p(n^{-1}). \end{aligned}$$

\(\square \)

Proof of Theorem 3

By definition, \(T=\sum _{t = 1}^{n}\ell ({\hat{U}}_{t-1},{\hat{U}}_{t}; {\hat{\theta }}) - \sum _{t = 1}^{n}\ell ({\hat{U}}_{t-1},{\hat{U}}_{t}; {\hat{\theta }}_{-t})\). Expanding \(\ell ({\hat{U}}_{t-1},{\hat{U}}_{t}; {\hat{\theta }}_{-t})\) around \({\hat{\theta }}\) leads to

$$\begin{aligned} T= & {} -\sum _{t = 1}^{n}{\dot{\ell }}({\hat{U}}_{t-1},{\hat{U}}_{t}; {\hat{\theta }})^T({\hat{\theta }} - {\hat{\theta }}_{-t} ) - \frac{1}{2} \sum _{t = 1}^{n}({\hat{\theta }} - {\hat{\theta }}_{-t} )^{T}\ddot{\ell }({\hat{U}}_{t-1},{\hat{U}}_{t}; {\check{\theta }}_{-t})({\hat{\theta }} - {\hat{\theta }}_{-t} )\\= & {} -\sum _{t = 1}^{n}{\dot{\ell }}({\hat{U}}_{t-1},{\hat{U}}_{t}; {\hat{\theta }})^T \left\{ \frac{1}{n}\sum _{s= 1}^{n}\ddot{\ell }({\hat{U}}_{s-1},{\hat{U}}_{s};{\hat{\theta }})\right\} ^{-1} \frac{1}{n} {\dot{\ell }}({\hat{U}}_{t-1},{\hat{U}}_{t};{\hat{\theta }}) \\&-\,\frac{1}{2} \sum _{t = 1}^{n}({\hat{\theta }} - {\hat{\theta }}_{-t} )^{T}\ddot{\ell }({\hat{U}}_{t-1},{\hat{U}}_{t}; {\check{\theta }}_{-t})({\hat{\theta }} - {\hat{\theta }}_{-t} )\\= & {} R -\frac{1}{2} \sum _{t = 1}^{n}({\hat{\theta }} - {\hat{\theta }}_{-t} )^{T}\ddot{\ell }({\hat{U}}_{t-1},{\hat{U}}_{t}; {\check{\theta }}_{-t})({\hat{\theta }} - {\hat{\theta }}_{-t} ), \end{aligned}$$

where \({\check{\theta }}_{-t}\) lies between \(\theta \) and \({\hat{\theta }}_{-t}\). Lemma 1 implies that

$$\begin{aligned}&\sup _{1\le t\le n}\Vert \sum _{t = 1}^{n}({\hat{\theta }} - {\hat{\theta }}_{-t} )^{T}{\dot{\ell }}({\hat{U}}_{t-1},{\hat{U}}_{t}; {\check{\theta }}_{-t})({\hat{\theta }} - {\hat{\theta }}_{-t} )\Vert \\&\quad \le n \times \sup _{1\le t\le n}\Vert \theta -{\hat{\theta }}_{-t}\Vert ^2 \sup _{1\le t\le n}\sup _{\theta \in \Theta }\Vert {\dot{\ell }}({\hat{U}}_{t-1},{\hat{U}}_{t}; \theta )\Vert = O_p(n^{-1}). \end{aligned}$$

In summary, we prove that \(T - R = O_p(n^{-1})\). Similarly, we can prove \({\tilde{T}} - R = O_p(n^{-1})\). \(\square \)

1.2 Appendix II: Copula families

For the sake of self-containedness, below we present some brief descriptions of the four copula families: Clayton, Frank, Gaussian and Student’s t, considered in the simulation studies. Figure S11 shows the scatter plots of 1000 observations generated from the four copula families with Kendall’s \(\tau = 0.5\). In addition, we provide the explicit expression of \(C_{2 | 1}^{-1}\left( x | u_1, \theta \right) \), which is used to generate the pseudo-observations of a univariate time series from the assumed copula. Note that this function is the inverse of the function \(C_{2 | 1}\left( u_2 | u_1, \theta \right) \) described in Sect. 4.1, which is the conditional cdf of \(U_{t}\) given \(U_{t-1}=u\).

  1. 1.

    Clayton copula (Clayton 1978)

    $$\begin{aligned} C(u_1,u_2; \theta ) = \left( u_1^{-\theta }+u_2^{-\theta }-1\right) ^{-1/\theta }, \end{aligned}$$

    where the dependence coefficient \(\theta \ge 0\), which corresponds to Kendall’s \(\tau = \theta /(\theta +2)\). This copula represents lower tail dependency and is of particular interest in modeling the value-at-risk data. In addition, \(C_{2 | 1}^{-1}\left( x | u_{1} ; \theta \right) =\left[ \left( x^{-\theta /(1+\theta )}-1\right) u_{1}^{-\theta }+1\right] ^{-1 / \theta }\).

  2. 2.

    Frank copula (Genest 1987)

    $$\begin{aligned} C(u_1,u_2; \theta ) = -\theta ^{-1}\log \left( 1+ \frac{[e^{-\theta u_1}-1][e^{-\theta u_2}-1]}{e^{-\theta }-1}\right) , \end{aligned}$$
    (12)

    where \(\theta \ne 0\) and the corresponding Kendall’s tau is \(\tau = 1-4(D(\theta ) -1)/\theta \), \(D(\theta ) = \frac{1}{\theta }\int _{0}^{\theta }\frac{t}{e^t-1}dt\) for \(\theta >0\) and \(D(\theta ) = \frac{1}{\theta }\int _{0}^{\theta }\frac{t}{e^t-1}dt + 0.5\theta \) for \(\theta <0\). In addition, \(C_{2 | 1}^{-1}\left( x | u_{1} ; \theta \right) = - \theta \log \left[ 1-\frac{1-e^{-\theta }}{1+e^{-\theta u_1}(1/x-1)}\right] \).

  3. 3.

    The bivariate Gaussian copula is defined as

    $$\begin{aligned} C(u_1,u_2;\theta ) = \Phi _2(\Phi ^{-1}(u_1), \Phi ^{-1}(u_2); \rho ), \end{aligned}$$

    where \(\Phi (x)\) is the standard univariate Gaussian distribution, \(\Phi _2(x_1,x_2; \rho )\) is the bivariate Gaussian distribution with zeros mean and unit variance, and \(\rho \in [-1,1]\) is the correlation coefficient. Here, the copula parameter \(\theta =\rho \), corresponding to Kendall’s \(\tau = \frac{2}{\pi }\arcsin (\theta )\). In addition, \(C_{2 | 1}^{-1}\left( x | u_{1} ; \theta \right) = \Phi \left( \theta \Phi ^{-1}(u_1)+\sqrt{1-\theta ^2}x\right) \).

  4. 4.

    The Student’s t copula is a two-parameter copula, which is given by

    $$\begin{aligned} C(u_1,u_2; \nu ; \theta )= & {} \int _{-\infty }^{t_{\nu }^{-1}(u_1)}\int _{-\infty }^{t_{\nu }^{-1}(u_2)}\frac{1}{\sqrt{2\pi (1-\rho ^2)^{1/2}}}\\&\times \,\left( 1+\frac{x^2-2\rho xy + y^2}{\nu (1-\rho ^2)}\right) ^{-\nu /2-1}dxdy, \end{aligned}$$

    where the copula parameter \(\theta =(\rho ,\nu )\) with the correlation coefficient \(\rho \) and the d.f. \(\nu \). The Kendall’s \(\tau = \frac{2}{\pi }\arcsin (\rho )\). Student’s t copula has received increasing attention in the modeling of multivariate financial time series. Many empirical studies have shown that the Student’s t copulas fit better than Gaussian copulas since the former better captures the phenomenon of dependent extreme values, which is often observed in the financial asset return data (Breymann et al. 2003; Demarta and McNeil 2005). In addition, \(C_{2 | 1}^{-1}\left( x | u_{1} ; \theta \right) = F_{t_{\nu }}(\rho F^{-1}_{t_\nu }(u_1)+\sigma x)\), where \(F_{t_v}\) is the cdf of a t random variable with d.f. \(\nu \), and \(\sigma =\sqrt{\left[ \nu +F^{-1}_{t_\nu }(u_1)^2\right] (1-\rho ^2)/(\nu +1)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhou, Q.M. & Lin, H. Goodness-of-fit test of copula functions for semi-parametric univariate time series models. Stat Papers 62, 1697–1721 (2021). https://doi.org/10.1007/s00362-019-01153-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01153-4

Keywords

Navigation