Skip to main content
Log in

On optimal tests for circular reflective symmetry about an unknown central direction

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Symmetry is one of the most fundamental of dividing hypotheses, its rejection, or not, heavily influencing subsequent modeling strategies. In this paper, the authors construct tests for circular reflective symmetry about an unknown central direction that are asymptotically valid within a semi-parametric class of distributions and maintain certain parametric local and asymptotic optimality properties. The asymptotic distributions of the test statistics under the null hypothesis and under local alternatives are established, and a pre-existing omnibus test is identified as a special case of the proposed construction. The finite-sample properties of the semi-parametric tests are compared with those of other testing approaches in a simulation experiment, and recommendations made regarding testing for reflective symmetry in practice. Analyses of data on the directions of cracks in hip replacements illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe T, Pewsey A (2011) Sine-skewed circular distributions. Stat Pap 52:683–707

    Article  MathSciNet  Google Scholar 

  • Abe T, Kubota Y, Shimatani K, Aakala T, Kuuluvainen T (2012) Circular distributions of fallen logs as an indicator of forest disturbance regimes. Ecol Indic 18:559–566

    Article  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-\(t\) distribution. J R Stat Soc Ser B 65:367–389

    Article  MathSciNet  Google Scholar 

  • Bogdan M, Bogdan K, Futschik A (2002) A data driven smooth test for circular uniformity. Ann Inst Stat Math 54:29–44

    Article  MathSciNet  Google Scholar 

  • Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore

    Book  Google Scholar 

  • Jones MC, Pewsey A (2005) A family of symmetric distributions on the circle. J Am Stat Assoc 100:1422–1428

    Article  MathSciNet  Google Scholar 

  • Jones MC, Pewsey A (2012) Inverse Batschelet distributions for circular data. Biometrics 68:183–193

    Article  MathSciNet  Google Scholar 

  • Jupp PE, Spurr B (1983) Sobolev tests for symmetry of directional data. Ann Stat 11:1225–1231

    Article  MathSciNet  Google Scholar 

  • Jupp PE, Regoli G, Azzalini A (2016) A general setting for symmetric distributions and their relationship to general distributions. J Multivar Anal 148:107–119

    Article  MathSciNet  Google Scholar 

  • Kato S, Jones MC (2015) A tractable and interpretable four-parameter family of unimodal distributions on the circle. Biometrika 102:181–190

    Article  MathSciNet  Google Scholar 

  • Kreiss J (1987) On adaptive estimation in stationary ARMA processes. Ann Stat 15:112–133

    Article  MathSciNet  Google Scholar 

  • Le Cam L, Yang G (2000) Asymptotics in statistics. Some basic concepts, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Ley C, Verdebout T (2014) Simple optimal tests for circular reflective symmetry about a specified median direction. Stat Sin 24:1319–1339

    MathSciNet  MATH  Google Scholar 

  • Mann KA, Gupta S, Race A, Miller MA, Cleary RJ (2003) Application of circular statistics in the study of crack distribution around cemented femoral components. J Biomech 36:1231–1234

    Article  Google Scholar 

  • Meintanis S, Verdebout T (2018) Le Cam maximin tests for symmetry of circular data based on the characteristic function. Stat Sin 29:1301–1320

    MathSciNet  MATH  Google Scholar 

  • Oliveira M, Crujeiras RM, Rodríguez-Casal A (2012) A plug-in rule for bandwidth selection in circular density estimation. Comput Stat Data Anal 56:3898–3908

    Article  MathSciNet  Google Scholar 

  • Pérez IA, Sánchez ML, García MA, Pardo N (2012) Analysis of \(\text{ CO }_2\) daily cycle in the low atmosphere at a rural site. Sci Total Environ 431:286–292

    Article  Google Scholar 

  • Pewsey A (2002) Testing circular symmetry. Can J Stat 30:591–600

    Article  MathSciNet  Google Scholar 

  • Pewsey A (2004) Testing for circular reflective symmetry about a known median axis. J Appl Stat 31:575–585

    Article  MathSciNet  Google Scholar 

  • Schach S (1969) Nonparametric symmetry tests for circular distributions. Biometrika 56:571–577

    Article  MathSciNet  Google Scholar 

  • Umbach D, Jammalamadaka SR (2009) Building asymmetry into circular distributions. Stat Probab Lett 79:659–663

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous referees for their insightful and helpful comments on a previous draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Ameijeiras-Alonso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research work underpinning this paper was supported by Grants MTM2016-76969-P and PGC2018-097284-B-I00 (Spanish State Research Agency, AEI, co-funded by the European Regional Development Fund), GR15013 and GR18016 (Junta de Extremadura and the European Union), G.0826.15N (Flemish Science Foundation) and GOA/12/014 (Research Fund KU Leuven), the ARC Program of the Université libre de Bruxelles and by the Crédit de Recherche J.0134.18 of the FNRS (Fonds National pour la Recherche Scientifique), Communauté Française de Belgique. Part of the first author’s research was carried out during a visit to Ghent University supported by Grants BES-2014-071006 and EEBB-I-16-11503 (Spanish Ministry of Economy and Competitiveness).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 138 KB)

Appendices

Proof of Lemma 1

We show that \({\hat{{\varGamma }}}_{f_0,g_0;11}-{{\varGamma }}_{f_0,g_0;11}=o_{{\mathrm{P}}}(1)\) as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\). Showing that \({\hat{{\varGamma }}}_{g_0,p;12}-{{\varGamma }}_{g_0,p;12}=o_{{\mathrm{P}}}(1)\) as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) proceeds along the same lines. In this proof, we set \({\mu }^{(n)}:= \mu +n^{-1/2} \tau _1^{(n)}\) for some bounded sequence \(\tau _1^{(n)}\) as in Theorem 1. Because of the local discreteness of \({\hat{\mu }}^{(n)}\) (Assumption B), it is sufficient to show that

$$\begin{aligned} n^{-1} \sum _{i=1}^n {\dot{\varphi }}_{f_0}\left( {\varTheta }_i-{\mu }^{(n)}\right) -\mathrm{E}_{g_0}[{\dot{\varphi }}_{f_0}\left( {\varTheta }_i-{\mu }\right) ]=o_\mathrm{P}(1) \end{aligned}$$

as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\). The law of large numbers leads to

$$\begin{aligned} n^{-1} \sum _{i=1}^n {\dot{\varphi }}_{f_0}\left( {\varTheta }_i-{\mu }\right) -\mathrm{E}_{g_0}[{\dot{\varphi }}_{f_0}\left( {\varTheta }_i-{\mu }\right) ]=o_{\mathrm{P}}(1) \end{aligned}$$

as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) so that it only remains to show that

$$\begin{aligned} S_n:=n^{-1} \sum _{i=1}^n \left( {\dot{\varphi }}_{f_0}\left( {\varTheta }_i-{\mu }^{(n)}\right) -{\dot{\varphi }}_{f_0}\left( {\varTheta }_i-{\mu }\right) \right) \end{aligned}$$

is \(o_{{\mathrm{P}}}(1)\) as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\). As the \({\varTheta }_i\) are i.i.d., we find

$$\begin{aligned} {{\mathrm{E}}}[| S_n|]\le & {} n^{-1} \sum _{i=1}^n {{\mathrm{E}}}[|{\dot{\varphi }}_{f_0}\left( {\varTheta }_i-{\mu }^{(n)}\right) -{\dot{\varphi }}_{f_0}\left( {\varTheta }_i-{\mu }\right) |] \\= & {} {{\mathrm{E}}}[|{\dot{\varphi }}_{f_0}\left( {\varTheta }_1-{\mu }^{(n)}\right) -{\dot{\varphi }}_{f_0}\left( {\varTheta }_1-{\mu }\right) |]. \end{aligned}$$

Since \({\dot{\varphi }}_{f_0}\) is continuous on a compact support, it is bounded. The result then follows by applying Lebesgue’s dominated convergence theorem. \(\square \)

Proof of Lemma 2

To prove (i), we start by showing that \({\varDelta }_{f_0,j}^{(n)\star }({{\hat{\mu }}^{(n)}})-{\varDelta }_{f_0,j}^{(n)\star }(\mu )=o_P(1)\) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \). First note that, due to Assumption B, we have under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \) that

$$\begin{aligned} n^{-1/2} \sum _{i=1}^n \varphi _{f_0}({\varTheta }_i- {\hat{\mu }}^{(n)})= & {} {\varDelta }_{f_0}^{(n)}(\mu ) -{\mathrm{E}}_{g_0} [{\dot{\varphi }}_{f_0}({\varTheta }_i- {\mu })] n^{1/2} ({\hat{\mu }}^{(n)}- \mu )+ o_{{\mathrm{P}}}(1) \nonumber \\= & {} {\varDelta }_{f_0}^{(n)}(\mu )-{\varGamma }_{f_0,g_0;11} n^{1/2} ({\hat{\mu }}^{(n)}- \mu )+ o_{{\mathrm{P}}}(1). \end{aligned}$$
(12)

Therefore, using (4) with (12), it follows that

$$\begin{aligned} {\varDelta }_{f_0,j}^{(n)\star }({{\hat{\mu }}^{(n)}})= & {} {\varDelta }_{j}^{(n)}(\mu )- \eta {\varDelta }_{f_0}^{(n)}(\mu ) - ({\varGamma }_{g_0,j;12}- \eta {\varGamma }_{f_0,g_0;11}) n^{1/2} ({\hat{\mu }}^{(n)}- \mu )+ o_{{\mathrm{P}}}(1) \\= & {} {\varDelta }_{f_0,j}^{(n)\star }(\mu )+ o_{{\mathrm{P}}}(1) \end{aligned}$$

under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \) since \({\varGamma }_{g_0,j;12}- \eta {\varGamma }_{f_0,g_0;11}=0\). It remains to show that

$$\begin{aligned} {{\hat{{\varDelta }}}}_{f_0,j}^{(n)\star }({{\hat{\mu }}^{(n)}})-{\varDelta }_{f_0,j}^{(n)\star }({{\hat{\mu }}^{(n)}})=-\left( \frac{{\hat{{\varGamma }}}_{g_0,j;12}}{{\hat{{\varGamma }}}_{f_0,g_0;11}}-\frac{{\varGamma }_{g_0,j;12}}{{\varGamma }_{f_0,g_0;11}}\right) {\varDelta }_{f_0}^{(n)}\left( {\hat{\mu }}^{(n)}\right) =o_{{\mathrm{P}}}(1)\nonumber \\ \end{aligned}$$
(13)

under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \). To prove (13), first note that (12) and the central limit theorem (CLT) imply that \({\varDelta }_{f_0}^{(n)}\left( {\hat{\mu }}^{(n)}\right) \) is \(O_{\mathrm{P}}(1)\) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \). Therefore, we only need to show that

$$\begin{aligned} \frac{{\hat{{\varGamma }}}_{g_0,j;12}}{{\hat{{\varGamma }}}_{f_0,g_0;11}}-\frac{{\varGamma }_{g_0,j;12}}{{\varGamma }_{f_0,g_0;11}}=o_{\mathrm{P}}(1) \end{aligned}$$
(14)

as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \). Since

$$\begin{aligned} \frac{{\hat{{\varGamma }}}_{g_0,j;12}}{{\hat{{\varGamma }}}_{f_0,g_0;11}}-\frac{{\varGamma }_{g_0,j;12}}{{\varGamma }_{f_0,g_0;11}}= & {} \frac{{\hat{{\varGamma }}}_{g_0,j;12}-{\varGamma }_{g_0,j;12}}{{\hat{{\varGamma }}}_{f_0,g_0;11}}-\frac{{\varGamma }_{g_0,j;12}\left( {\hat{{\varGamma }}}_{f_0,g_0;11} - {\varGamma }_{f_0,g_0;11} \right) }{{\hat{{\varGamma }}}_{f_0,g_0;11} {\varGamma }_{f_0,g_0;11}}, \end{aligned}$$

the result follows directly from Lemma 1.

Turning to the proof of (ii), and working along the same lines as those at the end of the proof of Lemma 1, it is easily shown that

$$\begin{aligned}&n^{-1} \sum _{i=1}^n \varphi _{f_0}^2({\varTheta }_i- {\hat{\mu }}^{(n)})-\mathrm{E}_{g_0}[\varphi _{f_0}^2({\varTheta }_i- {\mu })], \nonumber \\&n^{-1} \sum _{i=1}^n \sin ^2(j({\varTheta }_i- {\hat{\mu }}^{(n)}))-\mathrm{E}_{g_0}[\sin ^2(j({\varTheta }_i- {\mu }))] \end{aligned}$$
(15)

and

$$\begin{aligned} n^{-1} \sum _{i=1}^n \sin (j({\varTheta }_i- {\hat{\mu }}^{(n)})) \varphi _{f_0}({\varTheta }_i- {\hat{\mu }}^{(n)})-{\mathrm{E}}_{g_0}[\sin (j({\varTheta }_i- {\mu })) \varphi _{f_0}({\varTheta }_i- {\mu })]\nonumber \\ \end{aligned}$$
(16)

are \(o_{{\mathrm{P}}}(1)\) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \). Using the law of large numbers, \(C_{f_0,j}({\mu })\) converges to \({\mathrm{E}}_{g_0}\left[ \left( \sin (j({\varTheta }_i-\mu )) -\frac{{\varGamma }_{g_0,j;12}}{{\varGamma }_{f_0,g_0;11}} \varphi _{f_0}({\varTheta }_i-\mu )\right) ^2\right] \), in probability, under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\). From this last result, it follows that \(C_{f_0,j}({\hat{\mu }}^{(n)})-C_{f_0,j}({\mu }) =o_{{\mathrm{P}}}(1)\) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \). Therefore it remains to show that \({\hat{C}}_{f_0,j}({\hat{\mu }}^{(n)}) -C_{f_0,j}({\hat{\mu }}^{(n)})\) is \(o_{\mathrm{P}}(1)\) under \(\mathrm{P}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \) . We readily obtain that

$$\begin{aligned}&{\hat{C}}_{f_0,j}\left( {\hat{\mu }}^{(n)}\right) -C_{f_0,j}\left( {\hat{\mu }}^{(n)}\right) = \left( \frac{{\hat{{\varGamma }}}_{g_0,j;12}^2}{{\hat{{\varGamma }}}_{f_0,g_0;11}^2}-\frac{{\varGamma }_{g_0,j;12}^2}{{\varGamma }_{f_0,g_0;11}^2}\right) n^{-1} \sum _{i=1}^n \varphi _{f_0}^2({\varTheta }_i- {\hat{\mu }}^{(n)}) \\&\quad -2 \left( \frac{{\hat{{\varGamma }}}_{g_0,j;12}}{{\hat{{\varGamma }}}_{f_0,g_0;11}}-\frac{{\varGamma }_{g_0,j;12}}{{\varGamma }_{f_0,g_0;11}}\right) n^{-1} \sum _{i=1}^n \sin (j({\varTheta }_i- {\hat{\mu }}^{(n)})) \varphi _{f_0}({\varTheta }_i- {\hat{\mu }}^{(n)}) \end{aligned}$$

so (15) and (16) together with (14) and the continuous mapping theorem imply that \({\hat{C}}_{f_0,j}\left( {\hat{\mu }}^{(n)}\right) -C_{f_0,j}\left( {\hat{\mu }}^{(n)}\right) \) is \(o_{\mathrm{P}}(1)\) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\) as \(n\rightarrow \infty \). The result follows.

\(\square \)

Proof of Theorem 2

Fix \(g_0\in {\mathcal {G}}\) and \(\mu \in [-\pi ,\pi )\). Lemma 2 combined with Slutsky’s lemma leads to

$$\begin{aligned} Q^{(n)}_{f_0,j}= \frac{{{\hat{{\varDelta }}}}_{f_0,j}^{(n)\star }({{\hat{\mu }}^{(n)}})}{\sqrt{{{\hat{C}}}_{f_0,j}({\hat{\mu }}^{(n)})}}=\frac{{\varDelta }_{f_0,j}^{(n)\star }( \mu )}{\sqrt{ C_{f_0,j}({\mu })}}+o_P(1)= \frac{{\varDelta }_{f_0,j}^{(n)\star }( \mu )}{V^{g_0}_{f_0}(j)}+o_P(1) \end{aligned}$$
(17)

as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\). Part (i) then follows from the CLT.

Part (ii) is obtained via Le Cam’s third lemma. First, it is necessary to calculate the joint distribution of \({{\hat{{\varDelta }}}}_{f_0,j}^{(n)\star }({{\hat{\mu }}^{(n)}})\) and \(\log (d{\mathrm{P}}^{(n)}_{(\mu ,n^{-1/2}\tau _2^{(n)})';g_0,k}/d\mathrm{P}^{(n)}_{(\mu ,0)';g_0})\) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\). We use Lemma 2 and the fact that

$$\begin{aligned}&n^{-1/2} \sum _{i=1}^n \left( \begin{array}{c} \sin (j( {\varTheta }_i- \mu )) -\eta \varphi _{f_0}({\varTheta }_i- \mu )\\ \tau _2^{(n)} \sin (k ({\varTheta }_i- \mu )) \end{array} \right) -\left( \begin{array}{c} 0\\ \frac{1}{2} (\tau _2^{(n)})^2 {\varGamma }_{g_0,k;22} \end{array} \right) \overset{{\mathcal {D}}}{\rightarrow } \\&{\mathcal {N}}_2\left( \left( \begin{array}{c} 0\\ -\frac{1}{2} (\tau _2)^2 {\varGamma }_{g_0,k;22} \end{array} \right) , \left( \begin{array}{cc} V^{g_0}_{f_0}(j)&{} \tau _2 C^{g_0}_{f_0}(j,k) \\ \tau _2 C^{g_0}_{f_0}(j,k) &{}(\tau _2)^2 {\varGamma }_{g_0,k;22} \end{array} \right) \right) \\ \end{aligned}$$

as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';g_0}\), obtained using the multivariate CLT. Now, since \(\mathrm{P}^{(n)}_{(\mu ,0)';g_0}\) and \(\mathrm{P}^{(n)}_{(\mu ,n^{-1/2}\tau _2^{(n)})';g_0,k}\) are mutually contiguous, applying Le Cam’s third lemma, we obtain that \({{\hat{{\varDelta }}}}_{f_0,j}^{(n)\star }({{\hat{\mu }}^{(n)}}) \overset{{\mathcal {D}}}{\rightarrow }{\mathcal {N}} (\tau _2 C^{g_0}_{f_0}(j,k), V^{g_0}_{f_0}(j))\) under \(\mathrm{P}^{(n)}_{(\mu ,n^{-1/2}\tau _2^{(n)})';g_0,k}\), as \(n\rightarrow \infty \).

We now turn to Part (iii). From (17), it is easily seen that

$$\begin{aligned} n^{-1/2} \sum _{i=1}^n\left[ \sin (j({\varTheta }_i-\mu )) - \frac{{\varGamma }_{f_0,j;12}}{{\varGamma }_{f_0,f_0;11}} \varphi _{f_0}({\varTheta }_i-\mu )\right] = {\varDelta }_{f_0,j}^{(n)\star }({{\hat{\mu }}^{(n)}}) + o_{{\mathrm{P}}}(1),\nonumber \\ \end{aligned}$$
(18)

as \(n\rightarrow \infty \) under \({\mathrm{P}}^{(n)}_{(\mu ,0)';f_0}\), and therefore under contiguous alternatives. Now, consider the following parametric testing problem

$$\begin{aligned} \left\{ \begin{array}{l} {\mathcal {H}}_{0;f_0}:=\cup _{\mu \in [-\pi ,\pi )}\mathrm{P}^{(n)}_{(\mu ,0)^{\prime };f_0}, \\ {\mathcal {H}}_{1;f_0,j}:=\cup _{\lambda \ne 0\in [-1,1]}\cup _{\mu \in [-\pi ,\pi )}\mathrm{P}^{(n)}_{(\mu ,\lambda )^{\prime };f_0,j}, \end{array}\right. \end{aligned}$$

and consider the parametric test that rejects \({\mathcal {H}}_{0;f_0}\) when the absolute value of the parametric test statistic, that can be derived by taking as numerator the first part of the equality in (18), is greater than \(z_{1-\alpha /2}\). It follows from Le Cam theory that this test is locally and asymptotically maximin for testing \({\mathcal {H}}_{0;f_0}\) against \({\mathcal {H}}_{1;f_0,j}\). The result in (iii) then follows from (18) and the optimality features of the parametric test for all \(f_0\in {\mathcal {G}}\) satisfying Assumption A. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameijeiras-Alonso, J., Ley, C., Pewsey, A. et al. On optimal tests for circular reflective symmetry about an unknown central direction. Stat Papers 62, 1651–1674 (2021). https://doi.org/10.1007/s00362-019-01150-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01150-7

Keywords

Mathematics Subject Classification

Navigation