Skip to main content
Log in

Estimating a function of scale parameter of an exponential population with unknown location under general loss function

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In the present study, we consider the problem of estimating a function of scale parameter \(\ln \sigma \) under an arbitrary location invariant bowl-shaped loss function, when location parameter \(\mu \) is unknown. Various improved estimators are proposed. Inadmissibility of the best affine equivariant estimator (BAEE) of \(\ln \sigma \) is established by deriving a Stein-type estimator. This improved estimator is not smooth. We derive a smooth estimator improving upon the BAEE. Further, the integral expression of risk difference (IERD) approach of Kubokawa is used to derive a class of improved estimators. To illustrate these results, we consider two specific loss functions: squared error and linex loss functions, and derive various estimators improving upon the BAEE. Finally, a simulation study has been carried out to numerically compare the risk performance of the improved estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Mosawi RR, Khan S (2018) Estimating moments of a selected Pareto population under asymmetric scale invariant loss function. Stat Pap 59(1):183–198

    MathSciNet  MATH  Google Scholar 

  • Arshad M, Misra N (2016) Estimation after selection from exponential populations with unequal scale parameters. Stat Pap 57(3):605–621

    MathSciNet  MATH  Google Scholar 

  • Beadle E, Schroeder J, Moran B, Suvorova S (2008) An overview of Renyi entropy and some potential applications. In: Signals, Systems and Computers, 2008 42nd Asilomar Conference on, IEEE, pp. 1698–1704

  • Bobotas P, Iliopoulos G, Kourouklis S (2012) Estimating the ratio of two scale parameters: a simple approach. Ann Inst Stat Math 64(2):343–357

    MathSciNet  MATH  Google Scholar 

  • Brewster JF (1974) Alternative estimators for the scale parameter of the exponential distribution with unknown location. Ann Stat 2(3):553–557

    MathSciNet  MATH  Google Scholar 

  • Brewster JF, Zidek J (1974) Improving on equivariant estimators. Ann Stat 2(1):21–38

    MathSciNet  MATH  Google Scholar 

  • Brown L (1968) Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Ann Math Stat 39(1):29–48

    MathSciNet  MATH  Google Scholar 

  • Brown LD (1966) On the admissibility of invariant estimators of one or more location parameters. Ann Math Stat 37(5):1087–1136

    MathSciNet  MATH  Google Scholar 

  • Cover TM, Thomas JA (2012) Elements of information theory. Wiley, Hoboken

    MATH  Google Scholar 

  • Grubbs FE (1971) Approximate fiducial bounds on reliability for the two parameter negative exponential distribution. Technometrics 13(4):873–876

    MATH  Google Scholar 

  • Hanawal MK, Sundaresan R (2011) Guessing revisited: a large deviations approach. IEEE Trans Inform Theory 57(1):70–78

    MathSciNet  MATH  Google Scholar 

  • Hughes M, Marsh J, Arbeit J, Neumann R, Fuhrhop R, Wallace K, Thomas L, Smith J, Agyem K, Lanza G (2009) Application of Renyi entropy for ultrasonic molecular imaging. J Acoust Soc Am 125(5):3141–3145

    Google Scholar 

  • Jizba P, Kleinert H, Shefaat M (2012) Rényi’s information transfer between financial time series. Phys A 391(10):2971–2989

    Google Scholar 

  • Kang SB, Cho YS, Han JT, Kim J (2012) An estimation of the entropy for a double exponential distribution based on multiply type-II censored samples. Entropy 14(2):161–173

    MathSciNet  MATH  Google Scholar 

  • Kayal S, Kumar S (2011) Estimating the entropy of an exponential population under the linex loss function. J Indian Stat Assoc 49:91–112

    MathSciNet  Google Scholar 

  • Kayal S, Kumar S (2013) Estimation of the Shannon’s entropy of several shifted exponential populations. Stat Probab Lett 83(4):1127–1135

    MathSciNet  MATH  Google Scholar 

  • Kayal S, Kumar S, Vellaisamy P (2015) Estimating the Rényi entropy of several exponential populations. Braz J Probab Stat 29(1):94–111

    MathSciNet  MATH  Google Scholar 

  • Kubokawa T (1994) A unified approach to improving equivariant estimators. Ann Stat 22(1):290–299

    Article  MathSciNet  MATH  Google Scholar 

  • Misra N, Choudhary P, Dhariyal I, Kundu D (2002) Smooth estimators for estimating order restricted scale parameters of two gamma distributions. Metrika 56(2):143–161

    Article  MathSciNet  MATH  Google Scholar 

  • Misra N, Singh H, Demchuk E (2005) Estimation of the entropy of a multivariate normal distribution. J Multivar Anal 92(2):324–342

    MathSciNet  MATH  Google Scholar 

  • Nematollahi N (2017) Admissible and minimax estimation of the parameter of the selected Pareto population under squared log error loss function. Stat Pap 58(2):319–339

    MathSciNet  MATH  Google Scholar 

  • Pan M, Zhang F (2017) Analysis of the \(\alpha \)-Renyi entropy and its application for medical image registration. Biomed Eng 29(03):1750020

    Google Scholar 

  • Petropoulos C (2006) Estimation of a quantile in a mixture model of exponential distributions with unknown location and scale parameters. Sankhyā 68(2):240–251

    MathSciNet  MATH  Google Scholar 

  • Petropoulos C (2017) Estimation of the order restricted scale parameters for two populations from the Lomax distribution. Metrika 80(4):483–502

    MathSciNet  MATH  Google Scholar 

  • Petropoulos C, Kourouklis S (2005) Estimation of a scale parameter in mixture models with unknown location. J Stat Plan Inference 128(1):191–218

    MathSciNet  MATH  Google Scholar 

  • Principe JC, Xu D, Fisher J (2000) Information theoretic learning. Unsuperv Adapt Filter 1:265–319

    Google Scholar 

  • Rényi A (1961) On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, The Regents of the University of California

  • Seo JI, Kang SB (2014) Entropy estimation of generalized half-logistic distribution (GHLD) based on type-II censored samples. Entropy 16(1):443–454

    Google Scholar 

  • Seo JI, Kim Y (2017) Objective Bayesian entropy inference for two-parameter logistic distribution using upper record values. Entropy 19(5):208

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Techl J 27:379–423

    MathSciNet  MATH  Google Scholar 

  • Stein C (1956) Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceeding of the Third berkeley symposium on mathematical statistics and probability. 1:197–206

  • Stein C (1964) Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Ann Inst Stat Math 16(1):155–160

    MathSciNet  MATH  Google Scholar 

  • Tripathi YM, Petropoulos C, Sultana F, Rastogi MK (2018) Estimating a linear parametric function of a doubly censored exponential distribution. Statistics 52(1):99–114

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely wishes to thank the editor and the anonymous reviewers for the suggestions which have considerably improved the content and the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchandan Kayal.

Appendix

Appendix

Lemma 6.1

Let a, b, r and \(\eta \) be positive real numbers with \(0<a<b\) and \(a_0\in (0,1]\). Then, the function

$$\begin{aligned} M(z)=\frac{a_0-e^{-az}}{a_0-e^{-bz}}I(az>\eta ), \end{aligned}$$

is increasing in \(z>0\).

Proof

Differentiating M(z) with respect to z we have

$$\begin{aligned} M^{\prime }(z)=\frac{\left( a_0-e^{-bz}\right) ae^{-az}-\left( a_0-e^{-az}\right) be^{-bz}}{\left( a_0-e^{-bz}\right) ^2}I(az>\eta ). \end{aligned}$$

Now, \(M^{\prime }(z)>0\) if

$$\begin{aligned} \left( a_0-e^{-bz}\right) ae^{-az}-\left( a_0-e^{-az}\right) be^{-bz}>0, \end{aligned}$$

which is equivalent to

$$\begin{aligned} \left( a_0-e^{-bz}\right) ae^{-az}>\left( a_0-e^{-az}\right) be^{-bz}. \end{aligned}$$

Further, \(te^{-zt}\left( a_0-e^{-tz}\right) ^{-1}\) is decreasing in t. Hence, under the assumption made, we obtain \(M^{\prime }(z)>0.\) \(\square \)

Lemma 6.2

Let r and \(r_1\) be positive real numbers such that \(0<r_1<r\). Then, the function

$$\begin{aligned} R(x)=\frac{1-e^{-rx}}{1-e^{-r_1 x}}I(x>0), \end{aligned}$$

is nonincreasing in \(x>0\).

Proof

The proof is similar to that of Lemma 6.1. \(\square \)

Lemma 6.3

Let r and \(\lambda \) be positive real numbers. Then, the function

$$\begin{aligned} G(y)=\frac{e^{-\lambda }-e^{-re^y}}{1-e^{-re^y}}I(e^y>\lambda /r), \end{aligned}$$

is increasing in \(y\in {\mathbb {R}}\).

Proof

Differentiating G(y) with respect to y, and then further simplification leads to \(G^{\prime }(y)>0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, L.K., Kayal, S. & Kumar, S. Estimating a function of scale parameter of an exponential population with unknown location under general loss function. Stat Papers 61, 2511–2527 (2020). https://doi.org/10.1007/s00362-018-1052-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-1052-7

Keywords

Navigation