Skip to main content
Log in

Restricted minimum volume confidence region for Pareto distribution

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Under some restriction, we establish the minimum volume confidence region for parameters of Pareto distribution, which can be applied to complete samples and, as well as left, right or doubly censored samples. It is not only computationally convenient, but also almost as accurate as the best confidence region in the literature, the computation of which is difficult in the double or left censoring case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Ghaly AA, Attia AF, Ali HM (1998) Estimation of the parameters of Pareto distribution and the reliability function using accelerated life testing with censoring. Commun Stat Simul Comput 27:469–484

    Article  MathSciNet  Google Scholar 

  • Arnold BC (1983) Pareto distributions. International Cooperative Publishing House, Fairland

    MATH  Google Scholar 

  • Beirlant J, Teugels JL, Vynckier P (1996) Practical analysis of extreme values. Leuven University Press, Leuven

    MATH  Google Scholar 

  • Bickel PJ, Doksum KA (2001) Mathematical statistics: basic ideas and selected topics, vol I, 2nd edn. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • Brazauskas V, Serfling R (2005) Favorable estimators for fitting Pareto models. Astin Bull 33:365–381

    Article  Google Scholar 

  • Chen Z (1996) Joint confidence region for the parameter of Pareto distribution. Metrika 44:191–197

    Article  MathSciNet  Google Scholar 

  • David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Dyer D (1981) Structural probability bounds for the strong Pareto distribution. Can J Stat 9:71–77

    Article  Google Scholar 

  • Fahidy TZ (2011) Applying Pareto distribution theory to electrolytic powder production. Electrochem Commun 13:262–264

    Article  Google Scholar 

  • Fernández AJ (2008) Highest posterior density estimation from multiply censored Pareto data. Stat Pap 49:333–341

    Article  MathSciNet  Google Scholar 

  • Fernández AJ (2012) Minimizing the area of a Pareto confidence region. Eur J Oper Res 221:205–212

    Article  MathSciNet  Google Scholar 

  • Fernández AJ (2013) Smallest Pareto confidence regions and applications. Comput Stat Data Anal 62:11–25

    Article  MathSciNet  Google Scholar 

  • Fernández AJ (2014) Computing optimal confidence sets for Pareto models under progressive censoring. J Comput Appl Math 259:168–180

    Article  MathSciNet  Google Scholar 

  • Hong CW, Wu JW, Cheng CH (2008) Computational procedure of performance assessment of lifetime index of Pareto lifetime businesses based on confidence interval. Appl Soft Comput 8:698–705

    Article  Google Scholar 

  • Howlader HA, Hossain A (2002) Bayesian survival estimation of Pareto distribution of the second kind based on failure-censored data. Comput Stat Data Anal 38:301–314

    Article  MathSciNet  Google Scholar 

  • Ijiri Y, Simon HA (1975) Some distributions associated with Bose-Einstein statistics. Proc Natl Acad Sci 72:1654–1657

    Article  MathSciNet  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Kim JHT, Ahn S, Ahn S (2017) Parameter estimation of the Pareto distribution using a pivotal quantity. J Korean Stat Soc 46:438–450

    Article  MathSciNet  Google Scholar 

  • Kuş C, Kaya MF (2007) Estimation for the parameters of the Pareto distribution under progressive censoring. Commun Stat 36:1359–1365

    Article  MathSciNet  Google Scholar 

  • Nigm AM, Al-Hussaini EK, Jaheen ZF (2003) Bayesian one-sample prediction of future observation under pareto distribution. Statistics 37:527–536

    Article  MathSciNet  Google Scholar 

  • Pareto V (1897) Couts d’economie politique. Rouge and cie, Lausanne and Paris

    Google Scholar 

  • Parsi S, Ganjali M, Sanjari Farsipour N (2010) Simultaneous confidence intervals for the parameters of Pareto distribution under progressive censoring. Commun Stat 39:94–106

    Article  MathSciNet  Google Scholar 

  • R Core Team (2014) R: a Language and environment for statistical computing, R foundation for statistical computing, Vienna. http://www.R-project.org/

  • Reed WJ, Jorgensen M (2004) The double Pareto-lognormal distributiona new parametric model for size distributions. Commun Stat 33:1733–1753

    Article  Google Scholar 

  • Seal HL (1980) Survival probabilities based on Pareto claim distributions. Astin Bull 11:61–72

    Article  Google Scholar 

  • Soliman AA (2008) Estimations for Pareto model using general progressive censored data and asymmetric loss. Commun Stat 37:1353–1370

    Article  MathSciNet  Google Scholar 

  • Upadhyay SK, Shastri V (1997) Bayesian results for classical Pareto distribution via Gibbs sampler, with doubly-censored observations. IEEE Trans Reliab 46:56–59

    Article  Google Scholar 

  • William J Reed (2003) The Pareto law ofincomesan explanation and an extension. Physica 319:469–486

    Article  MathSciNet  Google Scholar 

  • Wu SF (2008) Interval estimation for a Pareto distribution based on the doubly Type II censored sample. Comput Stat Data Anal 52:3779–3788

    Article  MathSciNet  Google Scholar 

  • Wu SF (2010) Interval estimation for the Pareto distribution based on the progressive type II censored sample. J Stat Comput Simul 80:463–474

    Article  MathSciNet  Google Scholar 

  • Wu JW, Lee WC, Chen SC (2006) Computational comparison for weighted moments estimators and BLUE of the scale parameter of a Pareto distribution with known shape parameter under type II multiply censored sample. Appl Math Comput 181:1462–1470

    MathSciNet  MATH  Google Scholar 

  • Wu JW, Lee WC, Chen SC (2007) Computational comparison of prediction future lifetime of electronic components with Pareto distribution based on multiply type II censored samples. Appl Math Comput 184:374–406

    MathSciNet  MATH  Google Scholar 

  • Zhang J (2013) Simplification of joint confidence regions for the parameters of the Pareto distribution. Comput Stat 28:1453–1462

    Article  MathSciNet  Google Scholar 

  • Zhang J (2017a) Minimum-volume confidence sets for exponential distributions. The American Statistician (in press)

  • Zhang J (2017b) Minimum-volume confidence sets for parameters of normal distributions. AStA Adv Stat Anal 101:309–320

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the National Natural Science Foundation of China (NSFC, Grant No. 11561073). The author would like to thank Editors and anonymous referees for valuable comments, corrections and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Appendices

Appendix A: Proof of Theorem 1

Proof

Let \(C^T\) be any level \(1-\alpha \) confidence set of \(\theta \), satisfying \({\int }_{\theta \in C^t}~dt\le r_k(\theta )|C^\theta |\). Then for any \(\theta \in \Theta \),

$$\begin{aligned} 1-\alpha \le P[\theta \in C^T]=\underset{\theta \in C^t}{\int }[f(t,\theta )-kp(\theta )]dt +kp(\theta )\underset{\theta \in C^t}{\int }dt. \end{aligned}$$

It follows from \(P[\theta \in C^T_k]=1-\alpha \) that

$$\begin{aligned} 0\le & {} P[\theta \in C^T]-P[\theta \in C^T_k]\\= & {} d_k(\theta )+kp(\theta )\big [\underset{\theta \in C^t}{\int }dt -\underset{\theta \in C^t_k}{\int }dt\big ]\\\le & {} kp(\theta )r_k(\theta )\big [|C^\theta |-|C_k^\theta |\big ], \end{aligned}$$

where

$$\begin{aligned} d_k(\theta )= & {} \left( \underset{\theta \in C^t}{\int }dt-\underset{\theta \in C^t_k}{\int }dt\right) [f(t,\theta )-kp(\theta )]dt\\= & {} \left( \underset{\theta \in C^t\cap \overline{C^t_k}}{\int }- \underset{\theta \in C^t_k\cap \overline{C^t}}{\int }\right) [f(t,\theta )-kp(\theta )]dt\le 0 \end{aligned}$$

by definition of \(C^T_k\), and \(\overline{C}\) denotes the complementary set of C. Thus, \(|C_k^\theta |\le |C^\theta |\) for \(\theta \in \Theta \), which implies that \(|C^T_k|\le |C^T|\). The proof is complete. \(\square \)

Appendix B: R code for computing \(k_{\alpha },\ k_1,\ k_2,\ k_1(x),\ k_2(x) \) in (4) and (5)

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Zhou, J. & Zhang, J. Restricted minimum volume confidence region for Pareto distribution. Stat Papers 61, 2015–2029 (2020). https://doi.org/10.1007/s00362-018-1018-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-1018-9

Keywords

Mathematics Subject Classification

Navigation