Skip to main content
Log in

Structure identification for varying coefficient models with measurement errors based on kernel smoothing

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Measurement error data are often encountered in a broad spectrum of scientific fields, including engineering, economics, biomedical sciences and epidemiology. Simply ignoring the measurement errors would result in biased estimators. Combining the local kernel smoothing and the SCAD approach, this paper proposes a bias-corrected penalized method to capture the underlying structure of varying coefficient models with measurement errors. We show that, under the proper choice of tuning parameters and some regular conditions, the proposed method can consistently remove all the unimportant variables and separate the constant effects and varying effects. The corresponding algorithm is also developed to compute the estimates using the local quadratic approximation. Simulation studies are conducted to assess the finite sample performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad I, Leelahanon S, Li Q (2005) Efficient estimation of a semiparametric partially linear varying coefficient model. Ann Stat 33:258–283

    Article  MathSciNet  Google Scholar 

  • Cai Z, Fan J, Li R (2000) Efficient estimation and inferences for varying-coefficient models. J Am Stat Assoc 95:941–956

    Article  MathSciNet  Google Scholar 

  • Fan J, Huang T (2005) Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 11:1031–1057

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  Google Scholar 

  • Hu T, Xia Y (2012) Adaptive semi-varying coefficient model selection. Stat Sin 22:575–599

    MathSciNet  MATH  Google Scholar 

  • Hu X, Wang Z, Zhao Z (2009) Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models. Stat Probab Lett 79:1044–1052

    Article  MathSciNet  Google Scholar 

  • Kai B, Li R, Zou H (2011) New efficient estimation and variable methods for semiparametric varying-coefficient partially linear models. Ann Stat 39:305–332

    Article  MathSciNet  Google Scholar 

  • Li L, Greene T (2008) Varying coefficients model with measurement error. Biometrics 64:519–526

    Article  MathSciNet  Google Scholar 

  • Li Q, Huang CJ, Li D, Fu TT (2002) Semiparametric smooth coefficient models. J Bus Econ Stat 20:412–422

    Article  MathSciNet  Google Scholar 

  • Li R, Liang H (2008) Variable selection in semiparametric regression modeling. Ann Stat 36:261–286

    Article  MathSciNet  Google Scholar 

  • Li X, You J, Zhou Y (2011) Statistical inference for varying-coefficient models with error-prone covariates. J Stat Comput Simul 81:1755–1771

    Article  MathSciNet  Google Scholar 

  • Liang H, Härdle W, Carroll RJ (1999) Estimation in a semiparametric partially linear errors-in-variables model. Ann Stat 27:1519–1535

    Article  MathSciNet  Google Scholar 

  • Ma X, Zhang J (2016) A new variable selection approach for varying coefficient models. Metrika 79:59–72

    Article  MathSciNet  Google Scholar 

  • Tang Q (2015) Robust estimation for spatial semiparametric varying coefficient partially linear regression. Stat Pap 56:1137–1161

    Article  MathSciNet  Google Scholar 

  • Tang Y, Wang H, Zhu Z, Song X (2012) A unified variable selection approach for varying coefficient models. Stat Sin 22:601–628

    Article  MathSciNet  Google Scholar 

  • Wang D, Kulasekera K (2012) Parametric component detection and variable selection in varying-coefficient partially linear models. J Multivar Anal 112:117–129

    Article  MathSciNet  Google Scholar 

  • Wang K, Lin L (2017) Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data. Stat Pap. https://doi.org/10.1007/s00362-017-0890-z

  • Wang M, Song L (2013) Identification for semiparametric varying coefficient partially linear models. Stat Probab Lett 83:1311–1320

    Article  MathSciNet  Google Scholar 

  • Wang H, Xia Y (2009) Shrinkage estimation of the varying coefficient model. J Am Stat Assoc 104:747–757

    Article  MathSciNet  Google Scholar 

  • Xia Y, Zhang W, Tong H (2004) Efficient estimation for semivarying-coefficient models. Biometrika 91:661–681

    Article  MathSciNet  Google Scholar 

  • You J, Chen G (2006) Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model. J Multivar Anal 97:324–341

    Article  MathSciNet  Google Scholar 

  • You J, Zhou Y, Chen G (2006) Corrected local polynomial estimation in varying-coefficient models with measurement errors. Can J Stat 34:391–410

    Article  MathSciNet  Google Scholar 

  • Zhang W, Lee S, Song X (2002) Local polynomial fitting in semivarying coefficient model. J Multivar Anal 82:166–188

    Article  MathSciNet  Google Scholar 

  • Zhao P, Xue L (2009) Variable selection for semiparametric varying coefficient partially linear models. Stat Probab Lett 79:2148–2157

    Article  MathSciNet  Google Scholar 

  • Zhao P, Xue L (2010) Variable selection for semiparametric varying coefficient partially linear errors-in-variables models. J Multivar Anal 101:1872–1883

    Article  MathSciNet  Google Scholar 

  • Zhao P, Xue L (2011) Variable selection for varying coefficient models with measurement errors. Metrika 74:231–245

    Article  MathSciNet  Google Scholar 

  • Zhao W, Zhang R, Liu J et al (2014) Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression. Ann Inst Stat Math 66:165–191

    Article  MathSciNet  Google Scholar 

  • Zhou Y, Liang H (2009) Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates. Ann Stat 37:427–458

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Mingqiu Wang’s Research was supported by the National Natural Science Foundation of China (Grant Nos. 11401340, 11771250). Peixin Zhao’s Research was supported by the Chongqing Research Program of Basic Theory and Advanced Technology (No. cstc2016jcyjA0151), and the Fifth Batch of Excellent Talent Support Program of Chongqing Colleges and University.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoning Kang.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Appendix

Appendix

Proof of Theorem 3.1

The proof of Theorem 3.1 is similar to that of Theorem  3.2 and thus is not given in detail. \(\square \)

Proof of Theorem 3.2

For any matrix \(A=(a_{ij}),\)\(\Vert A\Vert ^2=\sum _{i,j}a_{ij}^2.\) Denote \( \varvec{M}=(m_{ij})\in R^{n\times p}\) with rows \( \varvec{m}_1^\top ,\ldots , \varvec{m}_n^\top \) and columns \( \varvec{m}_{(1)},\ldots , \varvec{m}_{(p)}.\) Let \(\alpha _n=(nh)^{-1/2}.\) It suffices to show that for any given \(\epsilon >0,\) there exists a large constant C such that

$$\begin{aligned} \Pr \left\{ \inf \limits _{n^{-1}\Vert \varvec{M}\Vert ^2=C^2}Q_{\lambda _1,\lambda _2}\left( \varvec{\Phi }_0+\alpha _n \varvec{M}\right) > Q_{\lambda _1,\lambda _2}\left( \varvec{\Phi }_0\right) \right\} \ge 1 - \epsilon . \end{aligned}$$

Based on the definition of \(Q_{\lambda _1,\lambda _2}(\cdot ),\) we have

$$\begin{aligned}&Q_{\lambda _1,\lambda _2}\left( \varvec{\Phi }_0+\alpha _n \varvec{M}\right) - Q_{\lambda _1,\lambda _2}\left( \varvec{\Phi }_0\right) \nonumber \\&\quad =\sum _{j=1}^{n}\left[ Q_u^c\left( \varvec{\phi }_0\left( U_j\right) +\alpha _n \varvec{m}_j\right) -Q_u^c\left( \varvec{\phi }_0\left( U_j\right) \right) \right] \nonumber \\&\qquad + \sum _{k=1}^p\rho '_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_k\right\| \right) \left( \left\| \varvec{a}_{0k}+\alpha _n \varvec{m}_{(k)}\right\| -\left\| \varvec{a}_{0k}\right\| \right) \nonumber \\&\qquad + \sum _{k=1}^p\rho '_{\lambda _{2}}\left( \left\| \tilde{\varvec{b}}_k\right\| \right) \left( \left\| P_e\left( \varvec{a}_{0k}+\alpha _n \varvec{m}_{(k)}\right) \right\| -\left\| P_e\varvec{a}_{0k}\right\| \right) \nonumber \\&\quad \ge \sum _{j=1}^{n}\left[ Q_u^c\left( \varvec{\phi }_0\left( U_j\right) +\alpha _n \varvec{m}_j\right) -Q_u^c\left( \varvec{\phi }_0\left( U_j\right) \right) \right] \nonumber \\&\qquad -\, \alpha _n\sum _{k\notin S_z}\rho '_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_k\right\| \right) \left\| \varvec{m}_{(k)}\right\| -\,\alpha _n\sum _{k\in S_v}\rho '_{\lambda _{2}}\left( \left\| \tilde{\varvec{b}}_k\right\| \right) \left\| P_e \varvec{m}_{(k)}\right\| \nonumber \\&\quad =T_1+T_2+T_3. \end{aligned}$$
(6.1)

Let \(\widehat{\Sigma }(U_j)=n^{-1}\sum _{i=1}^n\mathbf {Z}_i\mathbf {Z}_i^{\top }K_h(U_j-U_i),\)\(\Omega (U_j)=n^{-1}\sum _{i=1}^n\Sigma \otimes K_h(U_j-U_i)\) and \(\hat{ \varvec{e}}_j=\sum _{i=1}^n\mathbf {Z}_iK_h(U_j-U_i)(Y_i-\mathbf {Z}_i^\top \varvec{\phi }_0(U_j)),\) we have

$$\begin{aligned} T_1= & {} \sum _{j=1}^{n}\alpha _n^2 \varvec{m}_j^{\top }\left[ \widehat{\Sigma }\left( U_j\right) -\Omega \left( U_j\right) \right] \varvec{m}_j-2\sum _{j=1}^{n}\alpha _n \varvec{m}_j^{\top }\left[ \hat{ \varvec{e}}_j+\Omega \left( U_j\right) \varvec{\phi }_0\left( U_j\right) \right] \\\ge & {} n\alpha _n^2\sum _{j=1}^{n}\lambda _j^{\min }\left\| \varvec{m}_j\right\| ^2-2\alpha _n\left( \sum _{j=1}^{n}\left\| \varvec{m}_j\right\| ^2\right) ^{1/2} \left( \sum _{j=1}^{n}\left\| \hat{ \varvec{e}}_j+\Omega \left( U_j\right) \varvec{\phi }_0\left( U_j\right) \right\| ^2\right) ^{1/2}\\\ge & {} n^2\alpha _n^2\lambda ^{\min }C^2 -2n^{1/2}\alpha _n C \left( \sum _{j=1}^{n}\left\| T_{1j}\right\| ^2\right) ^{1/2}, \end{aligned}$$

where \(\lambda _j^{\min }\) indicates the smallest eigenvalue of \(\widehat{\Sigma }(U_j)-\Omega (U_j),\)\(\lambda ^{\min }=\min \{\lambda _j^{\min },\,j=1,\ldots ,n\}\) and \(T_{1j}=\hat{ \varvec{e}}_j+\Omega (U_j)\varvec{\phi }_0(U_j).\)

Using the formula (A1) in You et al. (2006),

$$\begin{aligned} \widehat{\Sigma }(u)-\Omega (u)=f(u)\Gamma (u)+O_P\left( \left( \frac{\log n}{nh}\right) ^{1/2}\right) , \end{aligned}$$

we have \(\Pr (\lambda ^{\min }\rightarrow \lambda ^{\min }_0)\rightarrow 1,\) where \(\lambda ^{\min }_0=\inf _{u\in [0,1]}\lambda _{\min }(f(u)\Gamma (u)),\)\(\lambda _{\min }(A)\) stands for the minimal eigenvalue of an arbitrary positive definite matrix A. By conditions (C1)–(C2), it is easy to see \(\lambda ^{\min }_0>0.\)

We now decompose \(T_{1j}\) as

$$\begin{aligned} T_{1j}= & {} \sum _{i=1}^{n}\left[ \left( \mathbf {X}_i+\mathbf {V}_i\right) K_h\left( U_j-U_i\right) \left( \mathbf {X}_i^{\top }\varvec{\phi }_0\left( U_i\right) +\varepsilon _i-\mathbf {X}_i^{\top }\varvec{\phi }_0\left( U_j\right) -\mathbf {V}_i^{\top }\varvec{\phi }_0\left( U_j\right) \right) \right. \\&\left. \quad +\Sigma \otimes K_h\left( U_j-U_i\right) \varvec{\phi }_0\left( U_j\right) \right] \\= & {} \sum _{i=1}^{n}\mathbf {X}_i\mathbf {X}_i^{\top }K_h\left( U_j-U_i\right) \left( \varvec{\phi }_0\left( U_i\right) -\varvec{\phi }_0\left( U_j\right) \right) \\&\quad +\sum _{i=1}^{n}\mathbf {V}_i\mathbf {X}_i^{\top }K_h\left( U_j-U_i\right) \left( \varvec{\phi }_0\left( U_i\right) -\varvec{\phi }_0\left( U_j\right) \right) \\&\quad +\sum _{i=1}^{n}\mathbf {X}_iK_h\left( U_j-U_i\right) \varepsilon _i+\sum _{i=1}^{n}\mathbf {V}_iK_h\left( U_j-U_i\right) \varepsilon _i\\&\quad -\sum _{i=1}^{n}\left[ \mathbf {V}_i\mathbf {V}_i^{\top }K_h\left( U_j-U_i\right) -\Sigma \otimes K_h\left( U_j-U_i\right) \right] \varvec{\phi }_0\left( U_j\right) \\&\quad -\sum _{i=1}^{n}\mathbf {X}_i\mathbf {V}_i^{\top }K_h\left( U_j-U_i\right) \varvec{\phi }_0\left( U_j\right) \\\triangleq & {} T_{21}+T_{22}+T_{23}+T_{24}+T_{25}+T_{26}. \end{aligned}$$

Based on the proof of Wang and Xia (2009), we have \(\Vert T_{21}\Vert ^2=O_P(nh^{-1})\) and \(\Vert T_{23}\Vert ^2=O_P(nh^{-1}).\)

For \(T_{22},\)

$$\begin{aligned} E\left\| T_{22}\right\| ^2= & {} \sum _{i=1}^{n}E\left\| \mathbf {V}_i\right\| ^2\left[ \mathbf {X}_i^{\top }K_h\left( U_j-U_i\right) \left( \varvec{\phi }_0\left( U_i\right) -\varvec{\phi }_0\left( U_j\right) \right) \right] ^2\\= & {} \sum _{i=1}^{n}E\left\| \mathbf {V}_i\right\| ^2E\left[ \mathbf {X}_i^{\top }K_h\left( U_j-U_i\right) \left( \varvec{\phi }_0\left( U_i\right) -\varvec{\phi }_0\left( U_j\right) \right) \right] ^2\\= & {} (n-1)tr(\Sigma ) E\left[ \mathbf {X}_1^{\top }K_h\left( U_2-U_1\right) \left( \varvec{\phi }_0\left( U_1\right) -\varvec{\phi }_0\left( U_2\right) \right) \right] ^2. \end{aligned}$$

By Taylor expression, we have

$$\begin{aligned}&E\left[ \mathbf {X}_1^{\top }K_h\left( U_2-U_1\right) \left( \varvec{\phi }_0\left( U_1\right) -\varvec{\phi }_0\left( U_2\right) \right) \right] ^2\\&\quad \le 2E\left[ \mathbf {X}_1^{\top }K_h\left( U_2-U_1\right) \varvec{\phi }'_0\left( U_2\right) \left( U_1-U_2\right) \right] ^2\\&\qquad +\frac{1}{2} E\left[ \mathbf {X}_1^{\top }\varvec{\phi }''_0(U^*)K_h\left( U_2-U_1\right) \left( U_1-U_2\right) ^2\right] ^2\\&\quad \triangleq T_{221}+T_{222}, \end{aligned}$$

where \(\varvec{\phi }'_0(\cdot )=(\phi '_{01}(\cdot ),\ldots ,\phi '_{0p}(\cdot ))^{\top },\)\(\varvec{\phi }''_0(\cdot )=(\phi ''_{01}(\cdot ),\ldots ,\phi ''_{0p}(\cdot ))^{\top }\) and \(U^*\) is between \(U_1\) and \(U_2.\)

Based on some simple calculations,

$$\begin{aligned} T_{221}/2&=E\left\{ E\left\{ \left[ \mathbf {X}_1^{\top }\varvec{\phi }'_0\left( U_2\right) \right] ^2 K_h^2\left( U_2-U_1\right) \left( U_1-U_2\right) ^2|U_1,\,U_2\right\} \right\} \\&= E\left[ \varvec{\phi }'_0\left( U_2\right) ^{\top }\Gamma \left( U_1\right) \varvec{\phi }'_0\left( U_2\right) K_h^2\left( U_2-U_1\right) \left( U_1-U_2\right) ^2 \right] \\&= \int \int \varvec{\phi }'_0\left( u_2\right) ^{\top }\Gamma \left( u_1\right) \varvec{\phi }'_0\left( u_2\right) K_h^2\left( u_2-u_1\right) \left( u_1-u_2\right) ^2f\left( u_1\right) f\left( u_2\right) du_2du_1\\&{\mathop {=}\limits ^{(u_2-u_1)/h=s}} h\int \int \varvec{\phi }'_0\left( u_2\right) ^{\top }\Gamma \left( u_2+hs\right) \varvec{\phi }'_0\left( u_2\right) K^2(s)s^2f\left( u_2+hs\right) f\left( u_2\right) ds du_2. \end{aligned}$$

Let \(\widetilde{\Gamma }(u)=\Gamma (u)f(u),\) by Taylor expansion

$$\begin{aligned} \widetilde{\Gamma }\left( u_2+hs\right) =\widetilde{\Gamma }\left( u_2\right) +\widetilde{\Gamma }'\left( u_2\right) hs+ch^2s^2, \end{aligned}$$

where c is a constant. Consequently, we have

$$\begin{aligned} T_{221}/2= & {} h\int \int \varvec{\phi }'_0\left( u_2\right) ^{\top }\widetilde{\Gamma }\left( u_2\right) \varvec{\phi }'_0\left( u_2\right) K^2(s)s^2 f\left( u_2\right) ds du_2\\&\quad +h^2\int \int \varvec{\phi }'_0\left( u_2\right) ^{\top }\widetilde{\Gamma }'\left( u_2\right) \varvec{\phi }'_0\left( u_2\right) K^2(s) s^3 f\left( u_2\right) ds du_2\\&\quad +ch^3\int \int \varvec{\phi }'_0\left( u_2\right) ^{\top } \varvec{\phi }'_0\left( u_2\right) K^2(s)s^4 f\left( u_2\right) ds du_2\\= & {} O(h). \end{aligned}$$

Similarly, \(T_{222}=O(h).\) As a result, we have \(\Vert T_{22}\Vert ^2=O_P(nh)=O_P(nh^{-1})\) due to \(h\rightarrow 0.\)

For \(T_{24},\)

$$\begin{aligned} E\left\| T_{24}\right\| ^2= & {} \sum _{i=1}^{n}E\left\| \mathbf {V}_i\right\| ^2E\left[ \varepsilon _i^2K_h^2\left( U_j-U_i\right) \right] \\= & {} tr(\Sigma )\left[ E\left( \varepsilon _1^2K_h^2(0)\right) +(n-1)E\varepsilon _2^2K_h^2\left( U_1-U_2\right) \right] . \end{aligned}$$

Let \(\theta (u)=E(\varepsilon _2^2|U_2=u),\) we have

$$\begin{aligned}&E\varepsilon _2^2K_h^2\left( U_1-U_2\right) \nonumber \\&\quad = \int \int \theta \left( u_2\right) K_h^2\left( u_1-u_2\right) f\left( u_1\right) f\left( u_2\right) du_1du_2\nonumber \\&\quad {\mathop {=}\limits ^{(u_1-u_2)/h=s}}h^{-1}\int \int \theta \left( u_2\right) K^2(s) f\left( u_2+hs\right) f\left( u_2\right) dsdu_2\nonumber \\&\quad =O(1)h^{-1}\int K^2(s)ds\int \theta \left( u_2\right) f\left( u_2\right) du_2\nonumber \\&\quad =O(1)h^{-1}\int K^2(s)ds E \varepsilon _2^2=O\left( h^{-1}\right) . \end{aligned}$$
(6.2)

It follows that \(E\Vert T_{24}\Vert ^2=O(nh^{-1}).\)

For \(T_{25},\) using the Cauchy–Schwartz inequality, we obtain

$$\begin{aligned} E\left\| T_{25}\right\| ^2\le & {} E\left\| \sum _{i=1}^n\left[ \mathbf {V}_i\mathbf {V}_i^{\top }K_h\left( U_j-U_i\right) -\Sigma \otimes K_h\left( U_j-U_i\right) \right] \right\| ^2 E\left\| \varvec{\phi }_0\left( U_j\right) \right\| ^2. \end{aligned}$$

Denote \(\Sigma =(\sigma _{kl}),\) then

$$\begin{aligned}&E\left\| \sum _{i=1}^n\left[ \mathbf {V}_i\mathbf {V}_i^{\top }K_h\left( U_j-U_i\right) -\Sigma \otimes K_h\left( U_j-U_i\right) \right] \right\| ^2\\&\quad =\sum _{k,l}E\left( \sum _{i=1}^n\left( \sigma _{kl}-V_{ik}V_{il}\right) K_h\left( U_j-U_i\right) \right) ^2\\&\quad =\sum _{k,l}\left\{ E[\left( \sigma _{kl}-V_{ik}V_{il}\right) ^2K_h^2(0)+(n-1)E\left[ \left( \sigma _{kl}-V_{1k}V_{1l}\right) ^2K_h^2\left( U_1-U_2\right) \right] \right\} . \end{aligned}$$

Similar to the proof of \(T_{24},\) we have \(E\Vert T_{25}\Vert ^2=O(nh^{-1}).\)

For \(T_{26},\)

$$\begin{aligned} E\left\| T_{26}\right\| ^2\le & {} E\left\| \sum _{i=1}^{n}\mathbf {X}_i\mathbf {V}_i^{\top }K_h\left( U_j-U_i\right) \right\| ^2 E\left\| \varvec{\phi }_0\left( U_j\right) \right\| ^2\\= & {} \sum _{k,l}\left[ E\left( X_{1k}V_{1l}K_h(0)\right) ^2+(n-1)E\left( X_{1k}V_{1l}K_h\left( U_2-U_1\right) \right) ^2\right] E\left\| \varvec{\phi }_0\left( U_j\right) \right\| ^2\\= & {} \sum _{k,l}\left[ EV_{1l}^2E\left( X^2_{1k}K^2_h(0)\right) +(n-1)EV_{1l}^2E\left( X_{1k}^2 K_h^2\left( U_2-U_1\right) \right) \right] E\left\| \varvec{\phi }_0\left( U_j\right) \right\| ^2. \end{aligned}$$

Similar to the proof of (6.2), we have

$$\begin{aligned} E\left( X_{1k}^2 K_h^2\left( U_2-U_1\right) \right) =O\left( h^{-1}\right) . \end{aligned}$$

It follows that \( \Vert T_{26}\Vert ^2=O(nh^{-1}).\)

Now, we consider \(T_2.\)

$$\begin{aligned} \left| T_2\right| ^2\le p\alpha _n^2\max \left\{ \rho '^2_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_k\right\| \right) : k\notin S_z\right\} \Vert \varvec{M}\Vert ^2. \end{aligned}$$

Note that

$$\begin{aligned} \rho '_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_k\right\| \right) =\rho '_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_k\right\| \right) I\left( \left\| \tilde{\varvec{a}}_k\right\| \le a\lambda _{1}\right) . \end{aligned}$$

For \(k\notin S_z,\)\(n^{-1}\Vert \tilde{\varvec{a}}_k\Vert ^2>0,\) with probability tending to 1, and \(\lambda _{1}/\sqrt{n}\rightarrow 0,\) thus for any \(\xi >0,\)

$$\begin{aligned} \Pr \left( \rho '_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_k\right\| \right) >n^{3/2}\alpha _n \xi \right) \le \Pr \left( \left\| \tilde{\varvec{a}}_k\right\| \le a\lambda _{1}\right) \rightarrow 0, \end{aligned}$$
(6.3)

which implies that \(\rho '_{\lambda _{1}}(\Vert \tilde{\varvec{a}}_k\Vert )=o_P(n^{3/2}\alpha _n).\) So we have \(T_2=o_P(n^2\alpha _n^2)C.\) Similarly, for \(k\in S_v,\)\(n^{-1}\Vert \tilde{\varvec{b}}_k\Vert ^2>0,\) with probability tending to 1, and \(\lambda _{2}/\sqrt{n}\rightarrow 0,\) so we have \(T_3=o_P(n^2\alpha _n^2)C.\)

By choosing a large C,  (6.1) is positive with probability close to 1. This completes the proof of Theorem 3.2. \(\square \)

Proof of Theorem 3.3

We first prove the part (1). We only need to prove that \(\Pr (\Vert \hat{\varvec{a}}_k\Vert =0)\rightarrow 1\) with \(k=p,\) where \(\hat{\varvec{a}}_k\) is the kth column of \(\hat{\varvec{\Phi }}.\) The proof for \(p_0+p_1<k<p\) is similar. If \(\Vert \hat{\varvec{a}}_p\Vert \ne 0,\) then

$$\begin{aligned} \left. \frac{\partial Q_{\lambda _1,\lambda _2}(\varvec{\Phi })}{\partial \varvec{a}_p}\right| _{\varvec{\Phi }=\hat{\varvec{\Phi }}} = J_1+J_2+J_3, \end{aligned}$$
(6.4)

where \(J_1\) is an \(n \times 1\) vector with its lth component given by

$$\begin{aligned}&J_{1l}= -2\sum _{i=1}^n \left[ \left( Y_i - \mathbf {Z}_i^\top \hat{\varvec{\phi }}\left( U_l\right) \right) K_h\left( U_l-U_i\right) Z_{ip}+\Sigma _{p\cdot }^{\top }\otimes K_h\left( U_l-U_i\right) \hat{\varvec{\phi }}\left( U_l\right) \right] ,\\&J_2 = \rho '_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_p\right\| \right) \hat{\varvec{a}}_p/\left\| \hat{\varvec{a}}_p\right\| , \end{aligned}$$

and

$$\begin{aligned} J_3= \rho '_{\lambda _{2}}\left( \left\| \tilde{\varvec{b}}_p\right\| \right) \hat{\varvec{b}}_p/\left\| \hat{\varvec{b}}_p\right\| , \end{aligned}$$

where \(\Sigma _{p\cdot }^{\top }\) is the pth row of \(\Sigma .\) From Theorem 3.1, we have \(n^{-1}\Vert \tilde{\varvec{a}}_p\Vert ^2=O_P(n^{-4/5})\) and \(n^{-1}\Vert \tilde{\varvec{b}}_p\Vert ^2=O_P(n^{-4/5}).\) According to the definition of the SCAD and \(n^{1/10}/\max (\lambda _{1},\,\lambda _{2})\rightarrow 0,\) we obtain

$$\begin{aligned} \left\| J_2\right\| /\max \left( \lambda _{1},\,\lambda _{2}\right) \le \rho '_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_p\right\| \right) /\lambda _{1}{\mathop {\rightarrow }\limits ^{P}} 1. \end{aligned}$$

In fact, for any \(\eta > 0,\)

$$\begin{aligned} \Pr \left( \left| \frac{\rho '_{\lambda _{1}}(\Vert \tilde{\varvec{a}}_p\Vert )}{\lambda _{1}} - 1\right|> \eta \right)\le & {} \Pr \left( \left\| \tilde{\varvec{a}}_p\right\|> \lambda _{1}\right) \\= & {} \Pr \left( \left\| \tilde{\varvec{a}}_p\right\| /\sqrt{n} > \lambda _{1}/\sqrt{n}\right) \\\rightarrow & {} 0. \end{aligned}$$

Similarly,

$$\begin{aligned} \left\| J_3\right\| /\max \left( \lambda _{1},\,\lambda _{2}\right) \le \rho '_{\lambda _{2}}\left( \left\| \tilde{\varvec{b}}_p\right\| \right) /\lambda _{2}{\mathop {\rightarrow }\limits ^{P}} 1. \end{aligned}$$

By standard arguments of kernel smoothing, we have \(\Vert J_1\Vert =O_P(nh^{-1/2}).\) Consequently, with probability tending to 1, the normal equation (6.4) cannot hold, which implies \(\Pr (\Vert \hat{\varvec{a}}_p\Vert =0)\rightarrow 1.\)

Now we prove the part (2). Similarly, we only need to prove that \(\Pr (\Vert \hat{\varvec{b}}_k\Vert =0)\rightarrow 1\) with \(k=p_0+p_1.\) The proof for \(p_0<k<p_0+p_1\) is similar. If \(\Vert \hat{\varvec{b}}_{p_0+p_1}\Vert \ne 0,\) then

$$\begin{aligned} \left. \frac{\partial Q_{\lambda _1,\lambda _2}(\varvec{\Phi })}{\partial \varvec{a}_{p_0+p_1}}\right| _{\varvec{\Phi }=\hat{\varvec{\Phi }}} = J_1^*+J_2^*+J_3^*, \end{aligned}$$
(6.5)

where \(J_1^*\) is an \(n \times 1\) vector with its lth component given by

$$\begin{aligned} J_{1l}^*= & {} -2\sum _{i=1}^n \bigg [\left( Y_i - \mathbf {Z}_i^\top \hat{\varvec{\phi }}\left( U_l\right) \right) K_h\left( U_l-U_i\right) Z_{i(p_0+p_1)}\\&+\Sigma _{(p_0+p_1)\cdot }^{\top }\otimes K_h\left( U_l-U_i\right) \hat{\varvec{\phi }}\left( U_l\right) \bigg ],\\ J_2^*= & {} \rho '_{\lambda _{1}}\left( \left\| \tilde{\varvec{a}}_{p_0+p_1}\right\| \right) \hat{\varvec{a}}_{p_0+p_1}/\left\| \hat{\varvec{a}}_{p_0+p_1}\right\| , \end{aligned}$$

and

$$\begin{aligned} J_3^*= \rho '_{\lambda _{2}}\left( \left\| \tilde{\varvec{b}}_{p_0+p_1}\right\| \right) \hat{\varvec{b}}_{p_0+p_1}/\left\| \hat{\varvec{b}}_{p_0+p_1}\right\| . \end{aligned}$$

By Theorem 3.1, we have \(n^{-1}\Vert \tilde{\varvec{a}}_{p_0+p_1}\Vert ^2>0\) with probability tending to 1 and \(n^{-1}\Vert \tilde{\varvec{b}}_{p_0+p_1}\Vert ^2=O_P(n^{-4/5}).\) From (6.3), we have

$$\begin{aligned} \left\| J_2^*\right\| =o_P\left( nh^{-1/2}\right) . \end{aligned}$$

Based on the definition of the SCAD, together with \(n^{1/10}/\max (\lambda _{1},\,\lambda _{2})\rightarrow 0,\) we can obtain

$$\begin{aligned} \left\| J_3^*\right\| /\max \left( \lambda _{1},\,\lambda _{2}\right) \le \rho '_{\lambda _{2}}\left( \left\| \tilde{\varvec{b}}_{p_0+p_1}\right\| \right) /\lambda _{2}\rightarrow 1. \end{aligned}$$

By standard arguments of kernel smoothing, we have \(\Vert J_1^*\Vert =O_P(nh^{-1/2}).\) Consequently, with probability tending to one, the normal equation (6.5) cannot hold, which implies \(\Pr (\Vert \hat{\varvec{b}}_{p_0+p_1}\Vert =0)\rightarrow 1.\)\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhao, P. & Kang, X. Structure identification for varying coefficient models with measurement errors based on kernel smoothing. Stat Papers 61, 1841–1857 (2020). https://doi.org/10.1007/s00362-018-1009-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-1009-x

Keywords

MSC:

Navigation