Skip to main content
Log in

A comprehensive error rate for multiple testing

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Over the last two decades, a large variety of type I error rates and control procedures have been proposed in the field of multiple hypotheses testing. This paper proposes a framework that includes many existing proposals by investigating procedures in which the ordered p-values are compared to an arbitrary positive and non-decreasing threshold sequence. For this case, we derive the error rate being controlled under different assumptions on the p-values. Our focus will be on step-up procedures. The new formulation gives insight into the relations between existing error rates and opens new perspectives for the whole field of multiple testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benjamini Y (2010) Discovering the false discovery rate. J R Stat Soc Ser B 72(4):405–416

    Article  MathSciNet  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    MathSciNet  MATH  Google Scholar 

  • Benjamini Y, Hochberg Y (1997) Multiple hypotheses testing with weights. Scand J Stat 24(3):407–418

    Article  MathSciNet  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  MathSciNet  Google Scholar 

  • Bernhard G, Klein M, Hommel G (2004) Global and multiple test procedures using ordered p-values—a review. Stat Pap 45(1):1–14

    Article  MathSciNet  Google Scholar 

  • Blanchard G, Roquain E (2008) Two simple sufficient conditions for FDR control. Electron J Stat 2:963–992

    Article  MathSciNet  Google Scholar 

  • Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pub del R Ist Sup di Sci Eco e Com di Fir 8:3–62 Bonferroni adjustment for multiple statistical tests using the same data

    MATH  Google Scholar 

  • Dudoit S, van der Laan MJ (2008) Multiple testing procedures with applications to genomics. Springer Series in Statistics. Springer, New York

    Book  Google Scholar 

  • Efron B, Tibshirani R, Storey J, Tusher V (2001) Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 96:1151–1160

    Article  MathSciNet  Google Scholar 

  • Finner H, Dickhaus T, Roters M (2009) On the false discovery rate and an asymptotically optimal rejection curve. Ann Stat 37:596–618

    Article  MathSciNet  Google Scholar 

  • Genovese C, Wasserman L (2002) Operating characteristics and extensions of the false discovery rate procedure. J R Stat Soc Ser B 64:499–517

    Article  MathSciNet  Google Scholar 

  • Genovese CR, Roeder K, Wasserman L (2006) False discovery control with p-value weighting. Biometrika 93(3):509–524

    Article  MathSciNet  Google Scholar 

  • Heesen P, Janssen A (2015) Inequalities for the false discovery rate (fdr) under dependence. Electron J Stat 9(1):679–716

    Article  MathSciNet  Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75(4):800–802

    Article  MathSciNet  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat Theory Appl 6(2):65–70

    MathSciNet  MATH  Google Scholar 

  • Hommel G, Hoffmann T (1987) Controlled uncertainty. In: Bauer P, Hommel G, Sonnemann E (eds) Multiple hypotheses testing. Springer, Heidelberg, pp 154–161

    Google Scholar 

  • Lehmann EL, Romano JP (2005) Generalizations of the familywise error rate. Ann Stat 33(3):1138–1154

    Article  MathSciNet  Google Scholar 

  • Meskaldji D-E (2013) Multiple comparison procedures for large correlated data with application to brain connectivity analysis. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne

  • Meskaldji D-E, Fischi-Gomez E, Griffa A, Hagmann P, Morgenthaler S, Thiran J-P (2013) Comparing connectomes across subjects and populations at different scales. Neuroimage 80:416–425 Mapping the Connectome

    Article  Google Scholar 

  • Meskaldji D-E, Thiran J-P, Morgenthaler S (2011) A comprehensive error rate for multiple testing. ArXiv e-prints arXiv:1112.4519

  • Meskaldji D-E, Vasung L, Romascano D, Thiran J-P, Hagmann P, Morgenthaler S, Ville DVD (2015) Improved statistical evaluation of group differences in connectomes by screening-filtering strategy with application to study maturation of brain connections between childhood and adolescence. Neuroimage 108:251–264

    Article  Google Scholar 

  • Pigeot I (2000) Basic concepts of multiple tests—a survey. Stat Pap 41(1):3–36

    Article  MathSciNet  Google Scholar 

  • Roquain E (2015) Contributions to multiple testing theory for high-dimensional data. Université Pierre et Marie Curie, Paris

    Google Scholar 

  • Roquain E, Villers F (2011) Exact calculations for false discovery proportion with application to least favorable configurations. Ann Stat 39:584–612

    Article  MathSciNet  Google Scholar 

  • Sarkar SK (1998) Some probability inequalities for ordered MTP2 random variables: a proof of the simes conjecture. Ann Stat 26(2):494–504

    Article  Google Scholar 

  • Schweder T, Spjøtvoll E (1982) Plots of p-values to evaluate many tests simultaneously. Biometrika 69(3):493–502

    Article  Google Scholar 

  • Simes RJ (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73(3):751–754

    Article  MathSciNet  Google Scholar 

  • van der Laan MJ, Dudoit S, Pollard KS (2004) Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat Appl Genet Mol Biol 3:1–25 Art. 15 (electronic)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The main part of this work was done while the first author was a Ph.D student in the Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (Meskaldji 2013). The authors would like to thank Etienne Roquain, Arnold Janssen and Bradley Efron for interesting comments and suggestions. We also thank the referees for their helpful and constructive comments.

Funding

This work was supported by the Swiss National Science Foundation [144467, PP00P2-146318].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalel-Eddine Meskaldji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meskaldji, DE., Van De Ville, D., Thiran, JP. et al. A comprehensive error rate for multiple testing. Stat Papers 61, 1859–1874 (2020). https://doi.org/10.1007/s00362-018-1008-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-1008-y

Keywords

Navigation