Skip to main content
Log in

CLT for integrated square error of density estimators with censoring indicators missing at random

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

A popular stochastic measure of the distance between the density of the lifetimes and its estimator is the integrated square error (ISE) and Hellinger distance (HD). In this paper, we focus on the right-censored model when the censoring indicators are missing at random. Based on two density estimators defined by Wang et al.(J Multivar Anal 100:835–850, 2009), and another new kernel estimator of the density, we established the asymptotic normality of the ISE and HD for the proposed estimators. In addition, the uniformly strongly consistency of the new kernel estimator of the density is discussed. Also, a simulation study is conducted to compare finite-sample performance of the proposed estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beran RJ (1977) Minimum Hellinger distance estimates for parametric models. Ann Stat 5:445–463

    Article  MathSciNet  Google Scholar 

  • Chatrabgoun O, Parham G, Chinipardaz R (2017) A Legendre multiwavelets approach to copula density estimation. Stat Papers 58(3):673–690

    Article  MathSciNet  Google Scholar 

  • Dinse GE (1982) Nonparametric estimation for partially-complete time and type of failure data. Biometrics 38:417–431

    Article  Google Scholar 

  • Hall P (1984) Central limit theorem for integrated square error of multivariate nonparametric density estimators. J Multivar Anal 14:1–16

    Article  MathSciNet  Google Scholar 

  • Hosseinioun N, Doosti H, Nirumand HA (2012) Nonparametric estimation of the derivatives of a density by the method of wavelet for mixing sequences. Stat Papers 53(1):195–203

    Article  MathSciNet  Google Scholar 

  • Jomhoori S, Fakoor V, Azarnoosh H (2012) Central limit theorem for ISE of kernel density estimators in censored dependent model. Commun Stat Theory Methods 41:1334–1349

    Article  MathSciNet  Google Scholar 

  • Koul H, Susarla V, van Ryzin J (1981) Regression analysis with randomly right censored data. Ann Stat 9:1276–1288

    Article  MathSciNet  Google Scholar 

  • Liang HY, Liu AA (2013) Kernel estimation of conditional density with truncated, censored and dependent data. J Multivar Anal 120:40–58

    Article  MathSciNet  Google Scholar 

  • Liang HY, Baek JI (2016) Asymptotic normality of conditional density estimation with left-truncated and dependent data. Stat Papers 57(1):1–20

    Article  MathSciNet  Google Scholar 

  • Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, New York

    MATH  Google Scholar 

  • Liu W, Lu X (2011) Empirical likelihood for density-weighted average derivatives. Stat Papers 52(2):391–412

    Article  MathSciNet  Google Scholar 

  • Luo S, Zhang CY (2016) Nonparametric M-type regression estimation under missing response data. Stat Papers 57(3):641–664

    Article  MathSciNet  Google Scholar 

  • McKeague IW, Subramanian S (1998) Product-limit estimators and cox regression with missing censoring information. Scand J Stat 25(4):589–601

    Article  MathSciNet  Google Scholar 

  • Nguyen TT, Tsoy Y (2017) A kernel PLS based classification method with missing data handling. Stat Papers 58(1):211–225

    Article  MathSciNet  Google Scholar 

  • Robins JM, Rotnitzky A (1992) Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewell N, Dietz K, Farewell V (eds) AIDS epidemiology-methodological issues. Birkhauser, Boston, pp 237–331

    Google Scholar 

  • Satten GA, Datta S (2001) The Kaplan-Meier estimator as an inverse-probability-of-censoring weighted average. Am Stat 55:207–210

    Article  MathSciNet  Google Scholar 

  • Sun LQ, Zheng ZG (1999) The asymptotics of the integrated square error for the kernel hazard rate estimators with left truncated and right censored data. Syst Sci Math Sci 12(3):251–262

    MathSciNet  MATH  Google Scholar 

  • Subramanian S (2004) Asymptotically efficient estimation of a survival function in the missing censoring indicator model. J Nonparametr Stat 16(5):797–817

    Article  MathSciNet  Google Scholar 

  • Subramanian S (2006) Survival analysis for the missing censoring indicator model using kernel density estimation techniques. Stat Methodol 3(2):125–136

    Article  MathSciNet  Google Scholar 

  • Tenreiro C (2001) On the asymptotic behavior of the integrated square error of kernel density estimators with data-dependent bandwidth. Stat Probab Lett 53:283–292

    Article  MathSciNet  Google Scholar 

  • Laan MJVD, McKeague IW (1998) Efficient estimation from right-censored data when failure indicators are missing at random. Ann Stat 26:164–182

    Article  MathSciNet  Google Scholar 

  • Wang Q, Ng KW (2008) Asymptotically efficient product-limit estimators with censoring indicators missing at random. Stat Sin 18:749–768

    MathSciNet  MATH  Google Scholar 

  • Wang Q, Liu W, Liu C (2009) Probability density estimation for survival data with censoring indicators missing at random. J Multivar Anal 100:835–850

    Article  MathSciNet  Google Scholar 

  • Wied D, Weißbach R (2012) Consistency of the kernel density estimator: a survey. Stat Papers 53(1):1–21

    Article  MathSciNet  Google Scholar 

  • Xu HX, Fan GL, Liang HY (2017) Hypothesis test on response mean with inequality constraints under data missing when covariables are present. Stat Papers 58(1):53–75

    Article  MathSciNet  Google Scholar 

  • Yang H, Liu H (2016) Penalized weighted composite quantile estimators with missing covariates. Stat Papers 57(1):69–88

    Article  MathSciNet  Google Scholar 

  • Zamini R, Fakoor V, Sarmad M (2015) On estimation of a density function in multiplicative censoring. Stat Papers 56(3):661–676

    Article  MathSciNet  Google Scholar 

  • Zhang B (1998) A note on the integrated square errors of kernel density estimators under random censorship. Stoch Process Their Appl 75:225–234

    Article  MathSciNet  Google Scholar 

  • Zhao L, Wu C (2001) Central limit theorem for integrated square error of kernel estimators of spherical density. Sci China Ser A Math 44(4):474–483

    Article  MathSciNet  Google Scholar 

  • Zou YY, Liang HY (2014) Global \(L_2\) error of wavelet density estimator with truncated and strong mixing observations. Int J Wavelets Multiresolut Inf Process 12(3):1450033, 1-12

    Article  Google Scholar 

  • Zou YY, Liang HY, Zhang JJ (2015) Nonlinear wavelet density estimation with data missing at random when covariates are present. Metrika 78(8):967–995

    Article  MathSciNet  Google Scholar 

  • Zou YY, Liang HY (2017a) Convergence rate of wavelet density estimator with data missing randomly when covariables are present. Commun Stat Theory Methods 46(2):1007–1023

    Article  MathSciNet  Google Scholar 

  • Zou YY, Liang HY (2017b) Wavelet estimation of density for censored data with censoring indicator missing at random. Statistics 51(6):1214–1237

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Major Research Plan of the National Social Science Foundation of China (18ZD05). The second author was supported by the National Natural Science Foundation of China (11671299) and the National Social Science Foundation of China (17BTJ032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ying Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we give some preliminary Lemmas, which have been used in Sect. 4.

Lemma 5.1

(Peter Hall (1984), Theorem1, p. 3) Let \(X_1,\ldots ,X_n\) be i.i.d. random variables. Assume \(\widetilde{H}_n(x,y)\) is symmetric, \(E[\widetilde{H}_n(X_1,X_2)|X_1]=0\) almost surely and \(E\widetilde{H}_n^2(X_1,X_2)<\infty \) for each n. Define \(\widetilde{G}_n(x,y)=E[\widetilde{H}_n(X_1,x)\widetilde{H}_n(X_1,y)]\). If

$$\begin{aligned}{}[E\widetilde{G}_n^2(X_1,X_2)+n^{-1}E\widetilde{H}_n^2(X_1,X_2)]/[E\widetilde{H}_n^2(X_1,X_2)]^2\rightarrow 0, \end{aligned}$$

then \(U_n=\sum _{1\le i<j \le n}\widetilde{H}_n(X_i,X_j)\) is asymptotically normally distributed with zero mean and variance given by \(\frac{1}{2}n^2E\widetilde{H}_n^2(X_1,X_2)\).

Lemma 5.2

Let \(V_n(X_i)=\frac{1}{nb_{n}}\sum _{j=1}^n\xi _j\Omega (\frac{X_i-X_j}{b_{n}})\) and \(V(X_i)=\pi (X_i)h(X_i)\). If (A2), (A4), (A5) and (A7) hold, then

  1. (a)

    \(\max _{1\le i\le n}|V_n(X_i)-V(X_i)|I(X_i\le \tau )=O(\gamma _{n})~a.s.\)

  2. (b)

    \(\max _{1\le i\le n}|\widehat{m}_n(X_i)-m(X_i)|I(X_i\le \tau )=O(\gamma _{n})~a.s.\)

  3. (c)

    \(\max _{1\le i\le n}|\widehat{G}_n(X_i-)-G(X_i-)|I(X_i\le \tau )=O(\gamma _{n})~a.s.\)

  4. (d)

    \(\max _{1\le i\le n}|\widehat{\pi }_n(X_i)-\pi (X_i)|I(X_i\le \tau )=O(\eta _{n})~a.s.\)

Proof

Following the proof of Lemma A.3 in Zou and Liang (2017b), one can prove this Lemma. \(\square \)

Lemma 5.3

Suppose that (A2), (A4), (A5) and (A7) hold, then

$$\begin{aligned} \{\widehat{G}_n(X_i-)-G(X_i-)\}I(X_i\le \tau )= & {} \frac{1}{n}(1-G(X_i))\sum _{j=1}^n\zeta (X_j,\delta _j,\xi _j;X_i)I(X_i\le \tau )\\&+R_n(X_i)I(X_i\le \tau ), \end{aligned}$$

where \(\max _{1\le i\le n}|R_{n}(X_i)I(X_i\le \tau )|=o_p(n^{-1/2})\) and

$$\begin{aligned} \zeta (X_j,\delta _j,\xi _j;X_i)=&\frac{(\xi _j-\pi (X_j))(m(X_j)-\delta _j)}{\pi (X_j)(1-H(X_j))}I(X_j\le X_i) +\int _0^{X_i\wedge X_j}\frac{d{H}_1(s)}{(1-H(s))^2}\\&+\frac{1-\delta _j}{1-H(X_j)}I(X_j\le X_i). \end{aligned}$$

Proof

Following the proof line of Theorem 3.2 in Wang and Ng (2008), one can verify Lemma 5.5. \(\square \)

Lemma 5.4

If (A3), (A5) and (A7) hold, then we have \( \widehat{f}_R(t):=\bar{f}_R(t)+\widetilde{f}_R(t)+r_{1n}(t)+r_{2n}(t), \) where \(P_1(t)=[\pi (t)(1-G(t))]^{-1}\) and

$$\begin{aligned} \bar{f}_R(t)=&\frac{1}{nh_n}\sum _{i=1}^n\Big [\frac{\delta _i}{1-G(X_i)} +\frac{m(X_i)-\delta _i}{1-G(X_i)}+\frac{\xi _i(\delta _i-m(X_i))}{\pi (X_i)(1-G(X_i))}\Big ]K\Big (\frac{t-X_i}{h_{n}}\Big ),\\ \widetilde{f}_R(t)=&\frac{1}{nh_n}\sum _{i=1}^n\frac{ m(X_i)[\widehat{G}_n(X_i-)-G(X_i-)]}{(1- G(X_i))^2}K\Big (\frac{t-X_i}{h_{n}}\Big ),\\ r_{1n}(t)=&\frac{1}{nh_n}\sum _{j=1}^n\frac{\xi _j(\delta _j-m(X_j))}{\pi (X_j)[1-G(X_j)]}\int \Big [K\Big (\frac{t-X_j}{h_{n}}-\frac{b_n}{h_n}u\Big )- K\Big (\frac{t-X_j}{h_{n}}\Big )\Big ]\Omega (u)du\\&+\frac{1}{nh_n}\sum _{j=1}^n\xi _j(\delta _j-m(X_j))\int [P_1(X_j+b_nu)-P_1(X_j)]K\Big (\frac{t-X_j}{h_{n}}-\frac{b_n}{h_n}u\Big )\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\xi _j(\delta _j-m(X_j))\Big \{ \frac{\Omega \big (\frac{X_i-X_j}{b_{n}}\big )}{V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&-E_{X_j} \Big [ \frac{\Omega \big (\frac{X_i-X_j}{b_{n}}\big )}{V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\Big ]\Big \}\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\frac{1}{V(X_i)(1-G(X_i))}K \Big (\frac{t-X_i}{h_{n}}\Big ) \xi _j(m(X_j)\\&-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\frac{V(X_i)-V_n(X_i)}{V_n(X_i)V(X_i) (1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big ) \xi _j(\delta _j\\&-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big ),\\ r_{2n}(t)=&\frac{1}{nh_n}\sum _{i=1}^n\frac{(\widehat{m}_n(X_i)-m(X_i))(\widehat{G}_n(X_i-)-G(X_i-))}{(1- G(X_i))(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{m(X_i)(\widehat{G}_n(X_i-)-G(X_i-))^2}{(1- G(X_i))^2(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big ). \end{aligned}$$

Proof

From the definition of \(\widehat{f}_R(t)\) in Sect. 2, one can rewrite

$$\begin{aligned} \widehat{f}_R(t) =&\frac{1}{nh_n}\sum _{i=1}^n\frac{m(X_i)}{1-G(X_i)}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{ m(X_i)(\widehat{G}_n(X_i-)-G(X_i-))}{(1- G(X_i))^2}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{\widehat{m}_n(X_i)-m(X_i)}{1- G(X_i)}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\Big \{\frac{1}{nh_n}\sum _{i=1}^n\frac{(\widehat{m}_n(X_i)-m(X_i))(\widehat{G}_n(X_i-)-G(X_i-))}{(1- G(X_i))(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{m(X_i)(\widehat{G}_n(X_i-)-G(X_i-))^2}{(1- G(X_i))^2(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big )\Big \}\\ =&\frac{1}{nh_n}\sum _{i=1}^n\frac{\delta _i}{1-G(X_i)}K\Big (\frac{t-X_i}{h_{n}}\Big ) +\frac{1}{nh_n}\sum _{i=1}^n\frac{m(X_i)-\delta _i}{1-G(X_i)}K \Big (\frac{t-X_i}{h_{n}}\Big )\\&+\widetilde{f}_R(t)+D_{1n}(t)+r_{2n}(t). \end{aligned}$$

From the definition of \(\widehat{m}_n(\cdot )\) in Sect. 2, we have

$$\begin{aligned} D_{1n}(t)=&\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\xi _j(\delta _j-m(X_j))E_{X_j}\Big [ \frac{\Omega \big (\frac{X_i-X_j}{b_{n}}\big )}{V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\Big ]\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\xi _j(\delta _j-m(X_j))\Big \{ \frac{\Omega \big (\frac{X_i-X_j}{b_{n}}\big )}{V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&-E_{X_j}\Big [ \frac{\Omega \big (\frac{X_i-X_j}{b_{n}}\big )}{V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\Big ]\Big \}\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\frac{1}{V(X_i)(1-G(X_i))} K\Big (\frac{t-X_i}{h_{n}}\Big ) \\&\xi _j(m(X_j)-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n \frac{V(X_i)-V_n(X_i)}{V_n(X_i)V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&\xi _j(\delta _j-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big ) \end{aligned}$$

and denote the first term as \(D_{2n}(t)\), then we have

$$\begin{aligned} D_{2n}(t)=&\frac{1}{nh_n}\sum _{j=1}^n\int \frac{\xi _j(\delta _j-m(X_j))}{\pi (X_j+b_nu)(1-G(X_j+b_{n}u))}K\Big (\frac{t-X_j}{h_{n}}-\frac{b_n}{h_n}u\Big ) \Omega (u)du\\ =&\frac{1}{nh_n}\sum _{j=1}^n\frac{\xi _j(\delta _j-m(X_j))}{\pi (X_j)(1-G(X_j))} K\Big (\frac{t-X_j}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{j=1}^n\frac{\xi _j(\delta _j-m(X_j))}{\pi (X_j)(1-G(X_j))} \int \Big [K\Big (\frac{t-X_j}{h_{n}}-\frac{b_n}{h_n}u\Big )\\&-K\Big (\frac{t-X_j}{h_{n}}\Big )\Big ]\Omega (u)du\\&+\frac{1}{nh_n}\sum _{j=1}^n\xi _j(\delta _j-m(X_j))\int [P_1(X_j+b_nu) -P_1(X_j)]\\&K\Big (\frac{t-X_j}{h_{n}}-\frac{b_n}{h_n}u\Big ) \Omega (u)du. \end{aligned}$$

Collecting the results above, this lemma is proved. \(\square \)

Lemma 5.5

Under Lemma 5.5, if (A0) and (A2)–(A8) hold, then \(\int r_{1n}^2(t)w(t)dt=o_p(n^{-1/2}h_n^2).\)

Proof

From the definition of \(r_{1n}(t)\) in Lemma 5.4, let \(r_{1n}(t):=\sum _{l=1}^5r_{1nl}(t)\). Due to the independence of \(\{X_j,\delta _j,\xi _j\}\) for \(j=1,\ldots ,n\), then, under MAR assumption, from (A5) to (A7) we have

$$\begin{aligned} \int E[r_{1n1}(t)]^2w(t)dt \le&\frac{C}{n^2h_n^2}\sum _{j=1}^n\int E\Big [\int \frac{\Omega (u)}{(r+1)!}\Big (-\frac{b_n}{h_n}u\Big )^r\int _0^1(1-\theta )^{r+1}\\&\times K^{(r)}\Big (\frac{t-X_j}{h_{n}}-\frac{b_n\theta }{h_n}u\Big )d\theta du\Big ]^2w(t)dt\\ =&\,O(n^{-1}b_n^{2r}h_n^{-(2r+1)}). \end{aligned}$$

Similarly, we have \(\int E[r_{1n2}(t)]^2w(t)dt=O(n^{-1}b_n^{2r}h_n^{-(2r+1)})\).

In order to evaluate \(r_{1n3}(t)\), let \(U_j=\xi _j(\delta _j-m(X_j))\) and

$$\begin{aligned} Y_{ij}=\frac{\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )}{V(X_i)[1-G(X_i)]}K\Big (\frac{t-X_i}{h_{n}}\Big )-E_{X_j} \Big [\frac{\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )}{V(X_i)[1-G(X_i)]}K\Big (\frac{t-X_i}{h_{n}}\Big )\Big ], \end{aligned}$$

it is easy to verify \(E[U_j^2 Y_{ij}^2]=O(h_nb_n)\), then

$$\begin{aligned} \int E[r_{1n3}(t)]^2w(t)dt =\frac{1}{n^4h_{n}^2b_n^2}\int \sum _{i=1}^n\sum _{j=1}^nE[U_j^2Y_{ij}^2]w(t)dt =O(n^{-2}h_n^{-1}b_n^{-1}). \end{aligned}$$

For \(r_{1n4}(t)\), we write

$$\begin{aligned} r_{1n4}(t)=&\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\frac{1}{V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&\times E_{X_i} \Big [\xi _j(m(X_j)-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\Big ]\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\frac{1}{V(X_i)(1-G(X_i))} K\Big (\frac{t-X_i}{h_{n}}\Big )\\&\times \Big \{ \xi _j(m(X_j)-m(X_i)) \Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\\&-E_{X_i}\Big [\xi _j(m(X_j)-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\Big ]\Big \} \\ :=&r_{1n4}^{(1)}(t)+r_{1n4}^{(2)}(t). \end{aligned}$$

Using the Taylor expansion, it follows that \(\int E[r_{1n4}^{(1)}(t)]^2w(t)dt=O(b_n^{2r})\).

Let \(A_i=\frac{1}{V(X_i)[1-G(X_i)]}K(\frac{t-X_i}{h_{n}})\) and

$$\begin{aligned} B_{ij}=\xi _j(m(X_j)-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big ) -E_{X_i}\Big [\xi _j(m(X_j)\!-\!m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\Big ]. \end{aligned}$$

It can be verified that \(E[A_i^2B_{ij}^2]=O(h_nb_n^3)\) and \(E[A_{i_1}A_{i_2}B_{i_1j}B_{i_2j}]=O(h_n^2b_n^4)\). Then

$$\begin{aligned} \int E[r_{1n4}^{(2)}(t)]^2w(t)dt&=\frac{1}{n^4h_n^2b_n^2}\int \Big \{\sum _{i=1}^n\sum _{j=1}^nE[A_i^2B_{ij}^2]\\&\quad +\sum _{i_1\ne i_2}^n\sum _{j=1}^nE[A_{i_1}A_{i_2}B_{i_1j}B_{i_2j}]\Big \}w(t)dt =O(n^{-1}b_n^2). \end{aligned}$$

For \(r_{1n5}(t)\), we observe

$$\begin{aligned} r_{1n5}(t) =&\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n \frac{ V(X_i)-V_n(X_i)}{V^2(X_i)(1-G(X_i))} K\Big (\frac{t-X_i}{h_{n}}\Big )\xi _j(\delta _j-m(X_i)) \Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n \frac{(V(X_i)-V_n(X_i))^2}{V_n(X_i)V^2(X_i)(1-G(X_i))}\\&K\Big (\frac{t-X_i}{h_{n}}\Big )\xi _j(\delta _j-m(X_i)) \Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\\ :=&I_{1n5}^{(1)}(t)+r_{1n5}^{(2)}(t). \end{aligned}$$

Recalling the definition of \(V_n(\cdot )\) in Lemma 5.2, it follows that

$$\begin{aligned} r_{1n5}^{(1)}(t)=&\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\frac{ V(X_i) -\frac{1}{nb_n}\sum _{k\ne j}^n\xi _k\Omega \Big (\frac{X_i-X_k}{b_n}\Big )}{V^2(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&\times E_{X_i} \Big [\xi _j(\delta _j-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_n}\Big )\Big ]\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\frac{ V(X_i) -\frac{1}{nb_n}\sum _{k\ne j}^n\xi _k\Omega \Big (\frac{X_i-X_k}{b_n}\Big )}{V^2(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&\times \Big \{\xi _j (\delta _j-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_n}\Big )\\&-E_{X_i}\Big [\xi _j(\delta _j-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_n}\Big )\Big ]\Big \}\\&+\frac{1}{n^3h_nb_n^2}\sum _{i=1}^n\sum _{j=1}^n\frac{ 1}{V^2(X_i) (1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\xi _j(\delta _j-m(X_i)) \Omega ^2\Big (\frac{X_i-X_j}{b_n}\Big )\\ :=&r_{1n5}^{(11)}(t)+r_{1n5}^{(12)}(t)+r_{1n5}^{(13)}(t). \end{aligned}$$

If \(i=j\), it is easy to verify that \(r_{1n5}^{(11)}(t)=0\), \(\int E[r_{1n5}^{(12)}(t)]^2w(t)dt=O(\gamma _n^2n^{-3}b_n^{-2} h_n^{-1})\) and \(\int E[r_{1n5}^{(13)}(t)]^2w(t)dt=O(n^{-5}b_n^{-4}h_n^{-1}).\)

If \(i\ne j\), we have \(\int E[r_{1n5}^{(11)}(t)]^2w(t)dt=O(\gamma _n^2b_n^{2r}h_n^{-1})\). Let \(S_i=\frac{ V(X_i)-\frac{1}{nb_n}\sum _{k\ne j}^n\xi _k\Omega (\frac{X_i-X_k}{b_n})}{V^2(X_i)[1-G(X_i)]}K\big (\frac{t-X_i}{h_{n}}\big )\),

$$\begin{aligned} Y_{ij}=\xi _j(\delta _j-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_n}\Big ) -E_{X_i}\Big [\xi _j(\delta _j-m(X_i))\Omega \;\Big (\frac{X_i-X_j}{b_n}\Big )\Big ]. \end{aligned}$$

It can be verified that \(E[S_i^2Y_{ij}^2]=O(\gamma _n^2h_nb_n)\) and \(E[S_{i_1}S_{i_2}Y_{i_1j}Y_{i_2j}]=O(\gamma _n^2h_nb_n^2)\). Then

$$\begin{aligned} \int E[r_{1n5}^{(12)}(t)]^2w(t)dt=&\frac{1}{n^4h_n^2b_n^2}\int \Big \{\sum _{i=1}^n\sum _{j=1}^n E[S_i^2Y_{ij}^2]\\+&\sum _{i_1\ne i_2}\sum _{j=1}^nE[S_{i_1}S_{i_2}Y_{i_1j}Y_{i_2j}]\Big \}w(t)dt =O(\gamma _n^2n^{-1}h_n^{-1}). \end{aligned}$$

Similarly, \(\int E[r_{1n5}^{(13)}(t)]^2w(t)dt=O(n^{-2}b_n^{-2}).\) From Lemma 5.2 (a), one can get \(\int E[r_{1n5}^{(2)}(t)]^2w(t)dt=O(\gamma _n^4).\) Collecting the results above and using (A8), it yields that

$$\begin{aligned} \int r_{1n}^2(t)w(t)dt= & {} O_p(n^{-1}b_n^{2r}h_n^{-(2r+1)}+b_n^{2r}+n^{-1}b_n^2+(\log n/(nb_n))^2)\\ {}= & {} o_p(n^{-1/2}h_n^2). \square \end{aligned}$$

Lemma 5.6

Under (A3), (A5) and (A7), we have \( \widehat{f}_I(t):=\bar{f}_I(t)+\widetilde{f}_I(t)+s_{1n}(t)+s_{2n}(t), \) where

$$\begin{aligned} \bar{f}_I(t)=&\frac{1}{nh_n}\sum _{i=1}^n\Big [\frac{\delta _i}{1-G(X_i)} +\frac{(1-\xi _i)(m(X_i)-\delta _i)}{1-G(X_i)}\\&+\frac{\xi _i(\delta _i-m(X_i))(1-\pi (X_i))}{\pi (X_i)(1-G(X_i))}\Big ] K\Big (\frac{t-X_i}{h_{n}}\Big ),\\ \widetilde{f}_I(t)=&\frac{1}{nh_n}\sum _{i=1}^n\frac{ (\xi _i\delta _i +(1-\xi _i)m(X_i))(\widehat{G}_n(X_i-)-G(X_i-))}{(1- G(X_i))^2}K \Big (\frac{t-X_i}{h_{n}}\Big ),\\ s_{1n}(t)=&\frac{1}{nh_n}\sum _{j=1}^n\frac{\xi _j(\delta _j-m(X_j)) (1-\pi (X_j))}{\pi (X_j)(1-G(X_j))}\int \Big [K\Big (\frac{t-X_j}{h_{n}} -\frac{b_n}{h_n}u\Big )\\&-K\Big (\frac{t-X_j}{h_{n}}\Big )\Big ]\Omega (u)du\\&+\frac{1}{nh_n}\sum _{j=1}^n\xi _j(\delta _j-m(X_j))(1-\pi (X_j))\\&\times \int [P_1(X_j+b_nu)-P_1(X_j)]K\Big (\frac{t-X_j}{h_{n}}-\frac{b_n}{h_n}u\Big )\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\xi _j(\delta _j-m(X_j)) \Big \{ \frac{(1-\xi _i)\Omega \big (\frac{X_i-X_j}{b_{n}}\big )}{V(X_i) (1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&-E_{X_j} \Big [ \frac{(1-\xi _i)\Omega \big (\frac{X_i-X_j}{b_{n}}\big )}{V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\Big ]\Big \}\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\frac{1-\xi _i}{V(X_i) (1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&\times \xi _j(m(X_j)-m(X_i)) \Omega \Big (\frac{X_i-X_j}{b_{n}}\Big )\\&+\frac{1}{n^2h_nb_n}\sum _{i=1}^n\sum _{j=1}^n\frac{(1-\xi _i)(V(X_i) -V_n(X_i))}{V_n(X_i)V(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&\times \xi _j(\delta _j-m(X_i))\Omega \Big (\frac{X_i-X_j}{b_{n}}\Big ),\\ s_{2n}(t)=&\frac{1}{nh_n}\sum _{i=1}^n\frac{(1-\xi _i) (\widehat{m}_n(X_i)-m(X_i))(\widehat{G}_n(X_i-)-G(X_i-))}{(1- G(X_i))(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{(\xi _i\delta _i+(1-\xi _i)m(X_i)) (\widehat{G}_n(X_i-)-G(X_i-))^2}{(1- G(X_i))^2(1-\widehat{G}_n(X_i-))} K\Big (\frac{t-X_i}{h_{n}}\Big ). \end{aligned}$$

Proof

Following the proof line as for Lemma 5.4, one can verify Lemma 5.6. \(\square \)

Lemma 5.7

Following simple calculation, we have \(\widehat{f}_W(t):=\bar{f}_W(t)+\widetilde{f}_W(t)+v_{1n}(t)+v_{2n}(t),\) where

$$\begin{aligned} \bar{f}_W(t)=&\frac{1}{nh_n}\sum _{i=1}^n\Big [\frac{\delta _i}{1-G(X_i)} +\frac{\Big (1-\frac{\xi _i}{\pi (X_i)}\Big )(m(X_i)-\delta _i)}{1-G(X_i)}\Big ]K\Big (\frac{t-X_j}{h_{n}}\Big ),\\ \widetilde{f}_W(t)=&\frac{1}{nh_n}\sum _{i=1}^n \frac{ \Big (\frac{\xi _i\delta _i}{\pi (X_i)}+\Big (1-\frac{\xi _i}{\pi (X_i)}\Big )m(X_i)\Big )}{(1- G(X_i))^2}(\widehat{G}_n(X_i-)-G(X_i-))K\Big (\frac{t-X_i}{h_{n}}\Big ),\\ v_{1n}(t)=&\frac{1}{nh_n}\sum _{i=1}^n\frac{\Big (1-\frac{\xi _i}{\pi (X_i)}\Big )(\widehat{m}_n(X_i)-m(X_i))}{1-G(X_i)}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{\xi _i( m(X_i)-\delta _i)(\widehat{\pi }_n(X_i)-\pi (X_i))}{\pi ^2(X_i)(1-G(X_i))}K\Big (\frac{t-X_i}{h_{n}}\Big ),\\ v_{2n}(t)=&\frac{1}{nh_n}\sum _{i=1}^n\frac{\Big (\frac{\xi _i\delta _i}{\pi (X_i)}+\Big (1-\frac{\xi _i}{\pi (X_i)}\Big )m(X_i)\Big )(\widehat{G}_n(X_i-)-G(X_i-))^2}{(1- G(X_i))(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{\Big (1-\frac{\xi _i}{\pi (X_i)}\Big )(\widehat{m}_n(X_i)-m(X_i))(\widehat{G}_n(X_i-)-G(X_i-))}{(1- G(X_i))(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{\xi _i(\delta _i-m(X_i))(\widehat{\pi }_n(X_i)-\pi (X_i))^2}{\pi ^2(X_i)\widehat{\pi }_n(X_i)(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{\xi _i(m(X_i)-\delta _i)(\widehat{\pi }_n(X_i)-\pi (X_i))(\widehat{G}_n(X_i-)-G(X_i-))}{\pi ^2(X_i)(1-\widehat{G}_n(X_i-))(1- G(X_i)}K\Big (\frac{t-X_i}{h_{n}}\Big )\\&+\frac{1}{nh_n}\sum _{i=1}^n\frac{\xi _i(\widehat{\pi }_n(X_i)-\pi (X_i))(\widehat{m}_n(X_i)-m(X_i))}{\pi (X_i)\widehat{\pi }_n(X_i)(1-\widehat{G}_n(X_i-))}K\Big (\frac{t-X_i}{h_{n}}\Big ). \end{aligned}$$

Proof

Following simple computation, one can get Lemma 5.7. Here, we omit the proof line. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, YY., Liang, HY. CLT for integrated square error of density estimators with censoring indicators missing at random. Stat Papers 61, 2685–2714 (2020). https://doi.org/10.1007/s00362-018-01065-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-01065-9

Keywords

Mathematics Subject Classification

Navigation