Skip to main content
Log in

On estimation of \(P\left( X > Y \right) \) based on judgement post stratification

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We propose an unbiased estimator for \(P\left( X>Y\right) \) and obtain an exact expression for its variance, based on judgement post stratification (JPS) sampling scheme. We then prove that the introduced estimator is consistent and establish its asymptotic normality. We show that the proposed estimator is at least as efficient asymptotically as its counterpart in simple random sampling (SRS), regardless of the quality of the rankings. For finite sample sizes, a Monte Carlo simulation study and a real data set are employed to show the preference of the JPS estimator to its SRS competitor in a wide range of settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Dastbaravarde A, Arghami NR, Sarmad M (2016) Some theoretical results concerning non parametric estimation by using a judgment poststratification sample. Commun Stat 45(8):2181–2203

    Article  MathSciNet  Google Scholar 

  • Dell TR, Clutter JL (1972) Ranked set sampling theory with order statistics background. Biometrics 28:545–555

    Article  Google Scholar 

  • Daz-Francs E, Montoya JA (2013) The simplicity of likelihood based inferences for \(P(X<Y)\) and for the ratio of means in the exponential model. Stat Pap 54:499–522

    Article  MathSciNet  Google Scholar 

  • Duembgen L, Zamanzade E (2013) Inference on a Distribution Function from Ranked Set Samples. arXiv preprint arXiv:1304.6950

  • Frey J, Feeman TG (2012) An improved mean estimator for judgment post-stratification. Comput Stat Data Anal 56(2):418–426

    Article  MathSciNet  Google Scholar 

  • Frey J, Feeman TG (2013) Variance estimation using judgment post-stratification. Ann Inst Stat Math 65(3):551–569

    Article  MathSciNet  Google Scholar 

  • Frey J, Ozturk O (2011) Constrained estimation using judgment post-stratification. Ann Inst Stat Math 63(4):769–789

    Article  MathSciNet  Google Scholar 

  • Govindarajulu Z (1968) Distribution-free confidence bounds for \(P(X<Y)\). Ann Inst Stat Math 20(1):229–238

    Article  MathSciNet  Google Scholar 

  • Kizilaslan F (2016) Classical and Bayesian estimation of reliability in a multicomponent stress-strength model based on a general class of inverse exponentiated distributions. Stat Pap. https://doi.org/10.1007/s00362-016-0810-7

  • Kizilaslan F, Nadar M (2016) Estimation of reliability in a multicomponent stress-strength model based on a bivariate Kumaraswamy distribution. Stat Pap. https://doi.org/10.1007/s00362-016-0765-8

  • Kotz S, Lumelskii Y, Pensky M (2003) The stress-strength model and its generalizations. Theory and applications. World Scientific, Singapore

    Book  Google Scholar 

  • MacEachern SN, Stasny EA, Wolfe DA (2004) Judgement poststratification with imprecise rankings. Biometrics 60(1):207–215

    Article  MathSciNet  Google Scholar 

  • Ozturk O (2014) Statistical inference for population quantiles and variance in judgment post-stratified samples. Comput Stat Data Anal 77:188–205

    Article  MathSciNet  Google Scholar 

  • Ozturk O (2015) Distribution free two-sample methods for judgment post-stratified data. Stat Sin 25(4):1691–1712

    MathSciNet  MATH  Google Scholar 

  • Prentice RI (1973) Exponential survivals with censoring and explanatory variables. Biometrika 60:279–288

    Article  MathSciNet  Google Scholar 

  • Rezaei S, Tahmasbi R, Mahmoodi M (2010) Estimation of \( P(Y< X)\) for generalized Pareto distribution. J Stat Plan Inference 140:480–494

    Article  MathSciNet  Google Scholar 

  • Sengupta S (2011) Unbiased estimation of \(P(X >Y)\) for two-parameter exponential populations using order statistics. Statistics 45(2):179–188

    Article  MathSciNet  Google Scholar 

  • Wang X, Lim J, Stokes L (2008) A nonparametric mean estimator for judgment poststratified data. Biometrics 64(2):355–363

    Article  MathSciNet  Google Scholar 

  • Wang X, Wang K, Lim J (2012) Isotonized CDF estimation from judgment poststratification data with empty strata. Biometrics 68(1):194–202

    Article  MathSciNet  Google Scholar 

  • Wong A (2012) Interval estimation of \( P(Y< X)\) for generalized Pareto distribution. J Stat Plan Inference 142:601–607

    Article  MathSciNet  Google Scholar 

  • Zamanzade E, Vock M (2016) Some nonparametric tests of perfect judgment ranking for judgment post stratification. Stati Pap. https://doi.org/10.1007/s00362-016-0805-4

  • Zamanzade E, Wang X (2017) Estimation of population proportion for judgment post-stratification. Comput Stat Data Anal 112:257–269

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for helpful suggestions that have improved the paper. The authors are also thankful to Prof. N.R. Arghami for reading and polishing the earlier version of this paper. E. Zamanzade’s research was carried out in IPM Isfahan branch and was in part supported by a Grant from IPM (No. 94620075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Zamanzade.

A Appendix

A Appendix

Let the random variables U and S be as defined in Remark 1. Then, they can be rewritten as

$$\begin{aligned} U&= E\left[ {\bar{F}}_{n;JPS}\left( Y \right) - {\bar{F}} \left( Y \right) \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) =\left( \mathbf {x,}{{{\mathbf {r}}}^{{\mathbf {x}}}} \right) \right. \right] \nonumber \\&\quad + E\left[ G_{m;JPS}^{-}\left( X \right) - G^{-} \left( X \right) \left| \left( \mathbf {Y,}{{{\mathbf {R}}}^{{\mathbf {y}}}} \right) =\left( \mathbf {y,}{{{\mathbf {r}}}^{{\mathbf {y}}}} \right) \right. \right] \nonumber \\&=\left( \sum _{i=1}^{n}{W_i^x G^{-}\left( X_i \right) } - \theta \right) + \left( \sum _{j=1}^{m}{W_j^y {\bar{F}}\left( Y_j \right) } - \theta \right) , \end{aligned}$$
(7)

and

$$\begin{aligned} S= & {} \sum _{j=1}^{m}{W_j^y \left( {\bar{F}}_{n;JPS}\left( Y_j \right) - {\bar{F}}\left( Y_j \right) \right) } \nonumber \\&- E\left[ {\bar{F}}_{n;JPS}\left( Y \right) - {\bar{F}} \left( Y \right) \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) =\left( \mathbf {x,}{{{\mathbf {r}}}^{{\mathbf {x}}}} \right) \right. \right] . \end{aligned}$$
(8)

The following lemma provides some of moment properties of U and V.

Lemma A. 1

Let U and S be random variables which are defined in Remark 1. Then,

  1. (i)

    \(E \left( U \right) =E \left( S \right) =0\).

  2. (ii)
    $$\begin{aligned} V \left( U \right)= & {} c_1^x V \left( G^{-} \left( X \right) \right) + c_2^x \sum _{h_1=1}^{H_1}{V \left( G^{-} \left( X_{\left[ h_1 \right] } \right) \right) } \\&+\, c_1^y V \left( {\bar{F}} \left( Y \right) \right) + c_2^y \sum _{h_2=1}^{H_2}{V \left( {\bar{F}} \left( Y_{\left[ h_2 \right] } \right) \right) }. \end{aligned}$$
  3. (iii)
    $$\begin{aligned} V \left( S \right)= & {} c_1^x c_1^y \left( E \left( {\bar{F}} \left( Y \right) F \left( Y \right) \right) - V \left( G^{-} \left( X \right) \right) \right) \\&+\, c_2^x c_1^y \sum _{h_1=1}^{H_1}{\left( E \left( {\bar{F}}_{\left[ h_1 \right] } \left( Y \right) F_{\left[ h_1 \right] } \left( Y \right) \right) - V \left( G^{-} \left( X_{\left[ h_1 \right] } \right) \right) \right) } \\&+ \,c_1^x c_2^y \sum _{h_2=1}^{H_2}{\left( E \left( {\bar{F}} \left( Y_{\left[ h_2 \right] } \right) F \left( Y_{\left[ h_2 \right] } \right) \right) - V \left( G^{-}_{\left[ h_2 \right] } \left( X \right) \right) \right) } \\&+ \,c_2^x c_2^y \sum _{h_1=1}^{H_1}{\sum _{h_2=1}^{H_2}{\left( E \left( {\bar{F}}_{\left[ h_1 \right] } \left( Y_{\left[ h_2 \right] } \right) F_{\left[ h_1 \right] } \left( Y_{\left[ h_2 \right] } \right) \right) - V \left( G^{-}_{\left[ h_2 \right] } \left( X_{\left[ h_1 \right] } \right) \right) \right) }}. \end{aligned}$$
  4. (iv)

    \(COV \left( U,S \right) =0\).

Proof

  1. (i)

    It follows from Theorem 2.1 that \(E \left( U \right) =0\). Also,

    $$\begin{aligned} E \left( S \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) =\left( \mathbf {x,}{{{\mathbf {r}}}^{{\mathbf {x}}}} \right) \right. \right) =0. \end{aligned}$$
    (9)

    And this proves the result.

  2. (ii)

    By using the fact that \( \sum _{i=1}^{n}{W_i^x G^{-}\left( X_i \right) }\) and \(\sum _{j=1}^{m}{W_j^y {\bar{F}}\left( Y_j \right) } \) are independent random variables, we have: \(V \left( U \right) =V \left( \sum _{i=1}^{n}{W_i^x G^{-}\left( X_i \right) } \right) + V \left( \sum _{j=1}^{m}{W_j^y {\bar{F}}\left( Y_j \right) } \right) \). Thus, Theorem 2.1 completes the proof.

  3. (iii)

    We can write

    $$\begin{aligned} V \left( S \right)&= E \left[ V \left( S \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) \right. \right) \right] \\&= c_1^y E \left[ V \left( {\bar{F}}_{n;JPS} \left( Y \right) - {\bar{F}} \left( Y \right) \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) \right. \right) \right] \\&\quad + c_2^y \sum _{h_2=1}^{H_2}{E \left[ V \left( {\bar{F}}_{n;JPS} \left( Y_{\left[ h_2 \right] } \right) - {\bar{F}} \left( Y_{\left[ h_2 \right] } \right) \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) \right. \right) \right] }, \end{aligned}$$

    where

    $$\begin{aligned}&E \left[ V \left( {\bar{F}}_{n;JPS} \left( Y \right) - {\bar{F}} \left( Y \right) \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) \right. \right) \right] = V \left( {\bar{F}}_{n;JPS} \left( Y \right) - {\bar{F}} \left( Y \right) \right) \\&\qquad - V \left[ E \left( {\bar{F}}_{n;JPS} \left( Y \right) - {\bar{F}} \left( Y \right) \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) \right. \right) \right] \\&\quad = E \left[ V \left( {\bar{F}}_{n;JPS} \left( Y \right) - {\bar{F}} \left( Y \right) \left| Y \right. \right) \right] - V \left( \sum _{i=1}^{n}{W_i^x G^{-}\left( X_i \right) } \right) \\&\quad = c_1^x E \left( {\bar{F}} \left( Y \right) F \left( Y \right) \right) + c_2^x \sum _{h_1=1}^{H_1}{ E \left( {\bar{F}}_{\left[ h_1 \right] } \left( Y \right) F_{\left[ h_1 \right] } \left( Y \right) \right) } \\&\qquad - c_1^x V \left( G^{-} \left( X \right) \right) - c_2^x \sum _{h_1=1}^{H_1}{ V \left( G^{-} \left( X_{\left[ h_1 \right] } \right) \right) }. \end{aligned}$$

    Also, \(E \left[ V \left( {\bar{F}}_{n;JPS} \left( Y_{\left[ h_2 \right] } \right) - {\bar{F}} \left( Y_{\left[ h_2 \right] } \right) \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) \right. \right) \right] \) can be computed in a similar manner, and this completes the proof.

  4. (iv)

    We can write \(COV \left( U,S \right) =COV \left( U,E \left( S \left| \left( \mathbf {X,}{{{\mathbf {R}}}^{{\mathbf {x}}}} \right) \right. \right) \right) \). And the equality (7) completes the proof.\(\square \)

The following lemma establishes the asymptotic behaviours of U and V.

Lemma A. 2

Let U and S be random variables which are defined in Remark 1. If \(\nu =min\left( n,m\right) \) approaches to infinity, then

  1. (i)

    \(\sqrt{\nu } \left( U - \theta \right) \) converges to a normal distribution with mean zero and variance \(\sigma _{ \left[ JPS\right] }^2=\lambda _1 \sigma _1^2 + \lambda _2 \sigma _2^2\), where

    $$\begin{aligned} \sigma _1^2=\frac{1}{H_1} \sum _{h_1=1}^{H_1} V\left( G^{-}\left( X_{[h_1]} \right) \right) ,\\ \sigma _2^2=\frac{1}{H_2} \sum _{h_2=1}^{H_2} V\left( F\left( Y_{[h_2]} \right) \right) ,\end{aligned}$$

    and \(\lambda _1=\lim _{\nu \rightarrow +\infty } \frac{\nu }{n}\), \(\lambda _2=\lim _{\nu \rightarrow +\infty } \frac{\nu }{m}\).

  2. (ii)

    \(\sqrt{\nu } S\) converges in probability to zero.

Proof

  1. (i)

    By using Theorem 2.2, we have

    $$\begin{aligned} \sqrt{\nu } \left( \sum _{i=1}^{n}{W_i^x G^{-}\left( X_i \right) } - \theta \right) \overset{D}{ \rightarrow } \sigma _1 Z_1, \end{aligned}$$

    and

    $$\begin{aligned} \sqrt{\nu } \left( \sum _{j=1}^{m}{W_j^y {\bar{F}}\left( Y_j \right) } - \theta \right) \overset{D}{ \rightarrow } \sigma _2 Z_2, \end{aligned}$$

    where \(Z_1\) and \(Z_2\) are the standard normal random variables. So the theorem is proved by noting that \(\sum _{i=1}^{n}{W_i^x G^{-}\left( X_i \right) }\) and \(\sum _{j=1}^{m}{W_j^y {\bar{F}}\left( Y_j \right) }\) are independent random variables.

  2. (ii)

    It is clear that \(E \left( \sqrt{\nu } S \right) =0\). So, it is enough to show that \(\lim _{\nu \rightarrow +\infty } {V \left( \sqrt{\nu } S \right) }=0\). The result is simply verified by noting that \(n c_1^x \rightarrow 0\), \(n H_1 c_2^x \rightarrow 1\) as \(n \rightarrow + \infty \) and \(m c_1^y \rightarrow 0\), \(m H_2 c_2^y \rightarrow 1\) as \(m \rightarrow + \infty \) (see Dastbaravarde et al. (2016)).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastbaravarde, A., Zamanzade, E. On estimation of \(P\left( X > Y \right) \) based on judgement post stratification. Stat Papers 61, 767–785 (2020). https://doi.org/10.1007/s00362-017-0962-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0962-0

Keywords

Mathematics Subject Classification

Navigation