Skip to main content
Log in

A matching prior based on the modified profile likelihood for the common mean in multiple log-normal distributions

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we develop a matching prior for the common mean in several log-normal distributions. For this problem, assigning priors appropriately for the common log-normal mean is challenging owing to the presence of nuisance parameters. Matching priors, which are priors that match the posterior probabilities of certain regions within their frequentist coverage probabilities, are commonly used in this problem. However, a closed form posterior under the derived first order matching prior is not available; further, the second order matching prior is difficult to be derived in this problem. Thus, alternatively, we derive a matching prior based on a modification of the profile likelihood. Simulation studies show that this proposed prior meets the target coverage probabilities very well even for small sample sizes. Finally, we present a real example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barndorff-Nielsen OE (1983) On a formula for the distribution of the maximum likelihood estimator. Biometrika 70:343–365

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nielsen OE, Cox DR (1994) Inference and asymptotics. Chapman & Hall, London

    Book  Google Scholar 

  • Berger JO, Bernardo JM (1989) Estimating a product of means: Bayesian analysis with reference priors. J Am Stat Assoc 84:200–207

    Article  MathSciNet  Google Scholar 

  • Berger JO, Bernardo JM (1992) On the development of reference priors (with discussion). In: Bernardo JM et al (eds) Bayesian statistics IV. Oxford University Press, Oxford, pp 35–60

    Google Scholar 

  • Bernardo JM (1979) Reference posterior distributions for Bayesian inference (with discussion). J R Stat Soc B 41:113–147

    MATH  Google Scholar 

  • Bradstreet TE, Liss CL (1995) Favorite data sets from early (and late) phases of drug research—Part 4. In: Proceedings of the section on statistical education of the American Statistical Association, pp 335–340

  • Buzsáki G, Kenji M (2014) The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15:264278

    Article  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the Metropolish–Hastings algorithm. Am Stat 49:327–335

    Google Scholar 

  • Datta GS, Mukerjee R (2004) Probability matching priors: higher order asymptotics. Springer, New York

    Book  Google Scholar 

  • Gill PS (2004) Small-sample inference for the comparison of means of log-normal distrbutions. Biometrics 60:525–527

    Article  MathSciNet  Google Scholar 

  • Gupta RC, Li X (2006) Statistical inference for the common mean of two log-normal distributions. Comput Stat Data Anal 50:3141–3164

    Article  Google Scholar 

  • Hannig J, Lidong E, Abdel-Karim A, Iyer H (2006) Simultaneous fiducial generalized confidence intervals for ratios of means of lognormal distribution. Aust J Stat 35:261–269

    Google Scholar 

  • Kim DH, Kang SG, Lee WD (2006) Noninformative priors for linear combinations of the normal means. Stat Pap 47:249–262

    Article  MathSciNet  Google Scholar 

  • Kim DH, Kang SG, Lee WD (2009) Noninformative priors for the normal variance ratio. Stat Pap 50:393402

    Article  MathSciNet  Google Scholar 

  • Li X (2009) A generalized p-value approach for comparing the means of several log-normal populations. Stat Probab Lett 79:1404–1408

    Article  MathSciNet  Google Scholar 

  • Limport E, Stahel WA, Abbt M (2001) Log-normal distributions across the science: keys and clues. BioScience 51:341–352

    Article  Google Scholar 

  • Lin SH (2013) The higher order likelihood method for the common mean of several log-normal distributions. Metrika 76:381–392

    Article  MathSciNet  Google Scholar 

  • Longford NT, Pittau MG (2006) Stability of household income in European countries in the 1990s. Comput Stat Data Anal 51:1364–1383

    Article  MathSciNet  Google Scholar 

  • Min X, Sun D (2013) A matching prior based on the modified profile likelihood in a generalized Weibull stress-strength model. Can J Stat 41:83–97

    Article  MathSciNet  Google Scholar 

  • Mukerjee R, Ghosh M (1997) Second order probability matching priors. Biometrika 84:970–975

    Article  MathSciNet  Google Scholar 

  • Pace L, Salvan A (2006) Adjustments of the profile likelihood from a new perspective. J Stat Plan Inference 136:3554–3564

    Article  MathSciNet  Google Scholar 

  • Parkhurst DF (1998) Arithmetic versus geometric means for environmental concentration data. Environ Sci Technol 88:92A–98A

    Article  Google Scholar 

  • Rappaport SM, Selvin S (1987) A method for evaluating the mean exposure from a lognormal distribution. Am Ind Hyg J 48:374–379

    Article  Google Scholar 

  • Schaarschmidt F (2013) Simultaneous confidence intervals for multiple comparisons among expected values of log-normal variables. Comput Stat Data Anal 58:265–275

    Article  MathSciNet  Google Scholar 

  • Severini TA (1998) Likelihood functions for inference in the presence of a nuisance parameter. Biometrika 85:507–522

    Article  MathSciNet  Google Scholar 

  • Severini TA (2000) Likelihood methods in statistics. Oxford University Press, London

    MATH  Google Scholar 

  • Tian L, Wu J (2007) Inferences on the common mean of several log-normal populations: the generalized variable approach. Biom J 49:944–951

    Article  MathSciNet  Google Scholar 

  • Tibshirani R (1989) Noninformative priors for one parameter of many. Biometrika 76:604–608

    Article  MathSciNet  Google Scholar 

  • Ventura L, Cabras S, Racugno W (2009) Prior distributions from pseudo-likelihoods in the presence of nuisance parameters. J Am Stat Assoc 104:768–774

    Article  MathSciNet  Google Scholar 

  • Ventura L, Racugno W (2011) Recent advances on Bayesian inference for \(P(X < Y)\). Bayesian Anal 6:411–428

    MathSciNet  MATH  Google Scholar 

  • Wu J, Jiang G, Wong ACM, Sun X (2002) Likelihood analysis for the ratio of means of two independent log-normal distributions. Biometrics 58:463–469

    Article  MathSciNet  Google Scholar 

  • Wu J, Wong ACM, Jiang G (2003) Likelihood-based confidence intervals for a log-normal mean. Stat Med 22:1849–1860

    Article  Google Scholar 

  • Wu Z, Li J, Bai C (2017) Scaling relations of lognormal type growth process with an extremal principle of entropy. Entropy 19:114

    Article  Google Scholar 

  • Zhou XH, Gao S (1997) Confidence interval for the log-normal mean. Stat Med 16:783–790

    Article  Google Scholar 

  • Zhou XH, Gao S, Hui SL (1997) Methods for comparing the means of two independent log-normal samples. Biometrics 53:1127–1135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Gil Kang.

Appendices

Appendix 1: Derivation of two group reference prior

We derived the two group reference prior for the parameter grouping \(\{\theta ,(\sigma _1,\cdots ,\sigma _k) \}\) by the algorithm of Berger and Bernardo (1992). The compact subsets were taken to be Cartesian products of sets of the form

$$\begin{aligned} \theta \in [a_1,b_1], \sigma _1 \in [a_2,b_2], \cdots , \sigma _k \in [a_{k+1},b_{k+1}]. \end{aligned}$$
(35)

In the limit \(a_1\) will tend to \(-\infty \), \(a_i, i=2,\cdots ,k\) will tend to 0, and \(b_i, i=1,\cdots ,k\) will tend to \(\infty \). For the derivation of the reference prior, from the Fisher information (2),

$$\begin{aligned} h_1= & {} 2\left( \prod _{i=1}^k n_i\sigma _i^{-4}\right) \left[ \sum _{i=1}^k n_i \prod _{j\ne i}^k\sigma _j^2(\sigma _j^2+2)\right] \left[ \prod _{i=1}^k n_i^{-1}\left( 1+{2\over \sigma _i^2}\right) ^{-1} \right] ,\\ h_2= & {} \prod _{i=1}^k n_i\left( 1+{2\over \sigma _i^2}\right) . \end{aligned}$$

Here, and below, a subscripted Q denotes a function that is constant and does not depend on any parameters but any Q may depend on the ranges of the parameters.

Step 1. Note that

$$\begin{aligned} \int _{a_{k+1}}^{b_{k+1}}\cdots \int _{a_2}^{b_2} h_{2}^{1/2} d\sigma _1 \cdots d\sigma _k = Q_1\prod _{i=1}^n n_i^{1\over 2} \end{aligned}$$

It follows that

$$\begin{aligned} \pi _{2}^l (\sigma _1,\cdots ,\sigma _k \vert \theta )= Q_1^{-1}\prod _{i=1}^k \left( 1+{2\over \sigma _i^2}\right) ^{1\over 2}. \end{aligned}$$

Step 2. Now

$$\begin{aligned} E^l \{ \log h_1 \vert \sigma _1,\cdots ,\sigma _k \}= & {} \int _{a_{k+1}}^{b_{k+1}} \cdots \int _{a_2}^{b_2} (\log h_1) \pi _{2}^l (\sigma _1,\cdots ,\sigma _k \vert \theta )d\sigma _1 \cdots d\sigma _k\\= & {} Q_2. \end{aligned}$$

It follows that

$$\begin{aligned} \pi _1^l (\theta )= \exp [E^l \{\log h_1 \vert \sigma _1,\cdots ,\sigma _k\}/2] =\exp \{Q_{2}/2\}. \end{aligned}$$

Therefore the reference prior is

$$\begin{aligned} \pi (\theta ,\sigma _1\cdots ,\sigma _k)= & {} \lim _{l\rightarrow \infty } { {\pi _2^l (\sigma _1,\cdots ,\sigma _k \vert \theta )\pi _1^l (\theta )} \over {\pi _2^l (\sigma _{10},\cdots ,\sigma _{k0} \vert \theta _{0})\pi _1^l (\theta _{0})} }\nonumber \\\propto & {} \prod _{i=1}^k \left( 1+{2\over \sigma _i^2}\right) ^{1\over 2}, \end{aligned}$$
(36)

where \(\theta _{0}\) and \((\sigma _{10}\cdots ,\sigma _{k0})\) are an inner point of the interval \((-\infty ,\infty )\) and the interval \((0,\infty )\), respectively.

Appendix 2: Markov Chain Monte Carlo numerical integration

We evaluate the frequentist coverage probability by investigating the credible interval of the marginal posteriors density of \(\theta \) under Jeffreys’ prior in (20). Since no closed form posterior is available, the posterior quantiles are obtained via application of the Markov Chain Monte Carlo numerical integration. We provide some of the implementation details below.

For Jeffreys’ prior, the joint posterior distribution of \(\theta ,\sigma _2,\ldots ,\sigma _{k-1}\) and \(\sigma _k\) given \(\mathbf x\) is

$$\begin{aligned} \pi (\theta ,\sigma _1,\ldots ,\sigma _k \vert \mathbf{x})\propto & {} \left( \prod _{i=1}^k \sigma _i^{-n_i-2}\right) \left[ \sum _{i=1}^k n_i \prod _{j\ne i}^k\sigma _j^2(\sigma _j^2+2)\right] ^{1\over 2}\nonumber \\&\quad \times \, \exp \left\{ - \sum _{i=1}^{k}{1\over 2\sigma _i^2} {\sum _{j=1}^{n_i}\left( \log x_{ij}-\theta +{\sigma _i^2\over 2}\right) ^2}\right\} . \end{aligned}$$

This results in full conditional distributions as follows:

$$\begin{aligned} (\theta \vert \sigma _1,\ldots ,\sigma _k, \mathbf{x})\propto & {} \exp \left\{ - {1\over 2}{ \left( {n_1\over \sigma _1^2}+\cdots +{n_k\over \sigma _k^2}\right) \left[ \theta -g(\sigma _1,\ldots ,\sigma _k)\right] ^2} \right\} , \end{aligned}$$
(37)
$$\begin{aligned} (\sigma _i \vert \theta ,\sigma _{j, j\ne i=1,\ldots ,k}, \mathbf{x})\propto & {} \sigma _i^{-n_i-2} \exp \left\{ - {S_i^2\over 2\sigma _i^2}\right\} \nonumber \\&\times \,\left[ \sum _{i=1}^k n_i \prod _{j\ne i}^k\sigma _j^2(\sigma _j^2+2)\right] ^{1\over 2} \exp \left\{ - {n_i ({\bar{x}}_i -\theta +{\sigma _i^2\over 2})^2\over 2\sigma _i^2} \right\} ,\nonumber \\ \end{aligned}$$
(38)

where \({\bar{x}}_i=\sum _{j=1}^{n_i}\log x_{ij}/n_i\), \(S_i^2=\sum _{j=1}^{n_i}(\log x_{ij}-{\bar{x}}_i)^2\) and \(g(\sigma _1,\ldots ,\sigma _k)\) is given by

$$\begin{aligned} { {n_1\over \sigma _1^2}\left( {\bar{x}}_1+{\sigma _1^2\over 2}\right) +\cdots +{n_k\over \sigma _k^2}\left( {\bar{x}}_k+{\sigma _k^2\over 2}\right) \over {n_1\over \sigma _1^2}+\cdots +{n_k\over \sigma _k^2} }. \end{aligned}$$

For the reference prior, the conditional density of \(\theta \) is the same as the case of Jeffreys’ prior, and the conditional densities of \(\sigma _i\) are different as follows.

$$\begin{aligned} (\sigma _i \vert \theta ,\sigma _{j, j\ne i=1,\ldots ,k}, \mathbf{x})\propto & {} \sigma _i^{-n_i} \exp \left\{ - {S_i^2\over 2\sigma _i^2}\right\} \nonumber \\&\quad \times \,\left( 1+{2\over \sigma _i^2}\right) ^{1\over 2} \exp \left\{ - {n_i ({\bar{x}}_i -\theta +{\sigma _i^2\over 2})^2\over 2\sigma _i^2} \right\} . \end{aligned}$$
(39)

For the conditional distributions of \(\sigma _i, i=1,\ldots ,k\), considering the rest being non-standard, the Metropolis–Hastings algorithm is used to generate samples along the lines of Chib and Greenberg (1995).

In each case, we computed the 5th and the 95th posterior quantilies from a sample of size 50,000 (discarding the first 30,000) and repeated the iterations 20,000 times to estimate the coverage probability.

Appendix 3: Propriety of posterior distribution

For Jeffreys’ prior, the joint posterior for \(\theta , \sigma _1,\ldots ,\sigma _{k-1}\) and \(\sigma _k\) given \(\mathbf{x}\) is

$$\begin{aligned} \pi (\theta ,\sigma _1,\ldots ,\sigma _k \vert \mathbf{x})\propto & {} \left( \prod _{i=1}^k \sigma _i^{-n_i-2}\right) \left[ \sum _{i=1}^k n_i \prod _{j\ne i}^k\sigma _j^2(\sigma _j^2+2)\right] ^{1\over 2}\nonumber \\&\quad \times \,\exp \left\{ - \sum _{i=1}^{k}{1\over 2\sigma _i^2} {\sum _{j=1}^{n_i}\left( \log x_{ij}-\theta +{\sigma _i^2\over 2}\right) ^2}\right\} . \end{aligned}$$
(40)

First, we integrate with respect to \(\theta \) from (40). Then,

$$\begin{aligned}&\pi (\sigma _1,\ldots ,\sigma _k \vert \mathbf{x})\nonumber \\&\quad \propto \left( \prod _{i=1}^k \sigma _i^{-n_i-2}\right) \left[ \sum _{i=1}^k n_i \prod _{j\ne i}^k\sigma _j^2(\sigma _j^2+2)\right] ^{1\over 2}\nonumber \\&\quad \quad \times \,\left( {n_1\over \sigma _1^2}+\cdots +{n_k\over \sigma _k^2}\right) ^{-{1\over 2}} \exp \left\{ -\sum _{i=1}^k{S_i^2\over 2\sigma _i^2}\right\} \exp \left\{ -g(\sigma _1,\ldots ,\sigma _k)\right\} \nonumber \\&\quad \le \left( \prod _{i=1}^k \sigma _i^{-n_i-2}\right) \left[ \sum _{i=1}^k n_i \prod _{j\ne i}^k\sigma _j^2(\sigma _j^2+2)\right] ^{1\over 2}\nonumber \\&\quad \quad \times \,\left( {n_1\over \sigma _1^2}+\cdots +{n_k\over \sigma _k^2}\right) ^{-{1\over 2}} \exp \left\{ -\sum _{i=1}^k{S_i^2\over 2\sigma _i^2}\right\} \equiv \pi '(\sigma _1,\ldots ,\sigma _k \vert \mathbf{x}), \end{aligned}$$
(41)

where \(S_i^2=\sum _{j=1}^{n_i} (\log x_{ij} - {\bar{x}}_i)^2,\)\({\bar{x}}_i = \sum _{j=1}^{n_i} \log x_{ij}/n_i, i=1,\ldots ,k\) and \(g(\sigma _1,\ldots ,\sigma _k)\) is a function of \(\sigma _1,\ldots ,\sigma _{k-1}\) and \(\sigma _k\). If \(0<\sigma _i<1, i=1,\ldots ,k\) then

$$\begin{aligned} \pi '(\sigma _1,\ldots ,\sigma _k \vert \mathbf{x}) \le k_1 \left( \prod _{i=1}^k \sigma _i^{-n_i-2}\right) \exp \left\{ -\sum _{i=1}^k{S_i^2\over 2\sigma _i^2}\right\} . \end{aligned}$$
(42)

Therefore, (42) is appropriate, if \(n_i+1>0, i=1,\ldots ,k\). Here, \(k_1\) is a constant. Next, if \(\sigma _i\ge 1, i=1,\ldots ,k\) then

$$\begin{aligned} \pi '(\sigma _1,\ldots ,\sigma _k \vert \mathbf{x}) \le k_2 \left( \prod _{i=1}^k \sigma _i^{-n_i+1}\right) \exp \left\{ -\sum _{i=1}^k{S_i^2\over 2\sigma _i^2}\right\} . \end{aligned}$$
(43)

Then, (43) is proper, if \(n_i-2>0, i=1,\ldots ,k\). Here, \(k_2\) is a constant. Finally, if \(0<\sigma _i<1, i=1,\ldots ,l\) and \(\sigma _i\ge 1, i=l+1,\ldots ,k\) then

$$\begin{aligned} \pi '(\sigma _1,\ldots ,\sigma _k \vert \mathbf{x}) \le k_3 \left( \prod _{i=1}^l \sigma _i^{-n_i-2}\right) \left( \prod _{i=l+1}^{k}\sigma _i^{-n_i+1}\right) \exp \left\{ -\sum _{i=1}^k {S_i^2\over 2\sigma _i^2}\right\} . \end{aligned}$$
(44)

Therefore the (44) is proper, if \(n_i+1>0, i=1,\ldots ,l\) and \(n_i-2>0, i=l+1,\ldots ,k\). Here \(k_3\) is a constant.

For the reference prior, the joint posterior for \(\theta , \sigma _1,\ldots ,\sigma _{k-1}\) and \(\sigma _k\) given \(\mathbf{x}\) is

$$\begin{aligned} \pi (\theta ,\sigma _1,\ldots ,\sigma _k \vert \mathbf{x})\propto & {} \left( \prod _{i=1}^k \sigma _i^{-n_i}\right) \left[ \prod _{i=1}^k \left( 1+{2\over \sigma _i^2}\right) ^{1\over 2}\right] \nonumber \\&\quad \times \,\exp \left\{ - \sum _{i=1}^{k}{S_i^2\over 2\sigma _i^2} -{\sum _{i=1}^{k}{n_i\over 2\sigma _i^2} \left( {\bar{x}}_{i}-\theta +{\sigma _i^2\over 2}\right) ^2}\right\} .\quad \end{aligned}$$
(45)

Then we have the following equation.

$$\begin{aligned} \pi (\theta ,\sigma _1,\ldots ,\sigma _k \vert \mathbf{x})\le & {} \left( \prod _{i=1}^k \sigma _i^{-n_i}\right) \left[ \prod _{i=1}^k \left( 1+{2\over \sigma _i^2}\right) ^{1\over 2}\right] \nonumber \\&\quad \times \,\exp \left\{ - \sum _{i=1}^{k}{S_i^2\over 2\sigma _i^2} -{{n_j\over 2\sigma _j^2} \left( {\bar{x}}_{j}-\theta +{\sigma _j^2\over 2}\right) ^2}\right\} \nonumber \\\le & {} \left( \prod _{i=1}^k \sigma _i^{-n_i}\left( 1+\sqrt{2}\sigma _i^{-1}\right) \right) \nonumber \\&\quad \times \,\exp \left\{ - \sum _{i=1}^{k}{S_i^2\over 2\sigma _i^2} -{{n_j\over 2\sigma _j^2} \left( {\bar{x}}_{j}-\theta +{\sigma _j^2\over 2}\right) ^2}\right\} . \end{aligned}$$
(46)

Therefore the (46) is proper, if \(n_i-2>0, i=1,\ldots ,k\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Lee, W.D. & Kang, S.G. A matching prior based on the modified profile likelihood for the common mean in multiple log-normal distributions. Stat Papers 61, 543–573 (2020). https://doi.org/10.1007/s00362-017-0950-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0950-4

Keywords

Navigation