Skip to main content
Log in

Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper we address the issue of testing inference of the dispersion parameter in heteroscedastic symmetric nonlinear regression models considering small samples. We derive Bartlett corrections to improve the likelihood ratio as well modified profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J Stat Comput Simul 74:609–620, 2004) and Ferrari et al. (J Stat Plan Inference 124:423–437, 2004), who consider a symmetric nonlinear regression model and normal linear regression model, respectively. We also present the bootstrap and bootstrap Bartlett corrected likelihood ratio tests. Monte Carlo simulations are carried out to compare the finite sample performances of the three corrected tests and their uncorrected versions. The numerical evidence shows that the corrected modified profile likelihood ratio test, the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than the other ones. We also present an empirical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Let \(\{a_n\}\) and \(\{ b_n\}\) be real sequences. \(a_n\) is said to be at most of order equal to \(b_n,\) denoted by \(a_n=O(b_n),\) if \(K \in {\mathbb {R}}^+\) exists and \(n_0(K),\) such that \(|a_n/b_n|\le K, \ \forall n\ge n_0(K).\)

References

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc Lond A 160:268–282

    Article  Google Scholar 

  • Bayer FM, Cribari-Neto F (2013) Bartlett corrections in beta regression models. J Stat Plan Inference 143:531–547

    Article  MathSciNet  Google Scholar 

  • Cook D, Weisberg S (1983) Diagnostics for heteroscedasticity in regression. Biometrika 70:1–10

    Article  MathSciNet  Google Scholar 

  • Cordeiro GM (2004) Corrected likelihood ratio tests in symmetric nonlinear regression models. J Stat Comput Simul 74:609–620

    Article  MathSciNet  Google Scholar 

  • Cordeiro GM, Cribari-Neto F (2014) An introduction to Bartlett correction and bias correction. Springer, New York

    Book  Google Scholar 

  • Cordeiro GM, Ferrari SLP, Uribe-Opazo MA, Vasconcellos KLP (2000) Corrected maximum-likelihood estimation in a class of symmeytric nonlinear regression models. Stat Probab Lett 46:317–328

    Article  Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R Stat Soc B 49:1–39

    MathSciNet  MATH  Google Scholar 

  • Cox DR, Reid N (1992) A note on the difference between profile and modified profile likelihood. Biometrika 79:408–411

    Article  MathSciNet  Google Scholar 

  • Cribari-Neto F, Queiroz MPF (2014) On testing inference in beta regression. J Stat Comput Simul 84:186–203

    Article  MathSciNet  Google Scholar 

  • Cysneiros FJA, Cordeiro GM, Cysneiros AHMA (2010a) Corrected maximum likelihood estimators in heteroscedastic symmetric nonlinear models. J Stat Comput Simul 80:451–461

    Article  MathSciNet  Google Scholar 

  • Cysneiros AHMA, Ferrari SLP (2006) An improved likelihood ratio test for varying dispersion in exponential family nonlinear models. Stat Prob Lett 76:255–265

    Article  MathSciNet  Google Scholar 

  • Cysneiros FJA, Paula GA, Galea M (2005) Modelos Simétricos Aplicados. 9 Escola de Modelos de Regressão, São Paulo

  • Cysneiros AHMA, Rodrigues KSP, Cordeiro GM, Ferrari SLP (2010b) Three Bartlett-type corrections for score statistics in symmetric nonlinear regression models. Stat Pap 51:273–284

    Article  MathSciNet  Google Scholar 

  • DiCiccio TJ, Stern SE (1994) Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihoods. J R Stat Soc Ser B Methodol 56:397–408

    MathSciNet  MATH  Google Scholar 

  • Doornik JA (2006) An object-oriented matrix language Ox 5. Timberlake Consultants Press, London

    Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  Google Scholar 

  • Fang KT, Anderson TW (1990b) Statistical inference in elliptical contoured and related distribuitions. Allerton Press, New York

    Google Scholar 

  • Fang KT, Kotz S, Ng KW (1990a) Symmetric multivariate and related distributions. Chapman and Hall, London

    Book  Google Scholar 

  • Ferrari SLP, Cysneiros AHMA, Cribari-Neto F (2004) An improved test for heteroskedasticity using adjusted modified profile likelihood inference. J Stat Plan Inference 124:423–437

    Article  MathSciNet  Google Scholar 

  • Ferrari SLP, Lucambio F, Cribari-Neto F (2005) Improved profile likelihood inference. J Stat Plan Inference 134:373–391

    Article  MathSciNet  Google Scholar 

  • Fujita A, Kojima K, Patriota AG, Sato JR, Severino P, Miyano S (2010) A fast and robust test based on likelihood ratio with Bartlett correction to identify granger causality between gene sets. Bioinformatics 26:2349–2351

    Article  Google Scholar 

  • Lawley DN (1956) A general method for approximating to the distribution of the likelihood ratio criteria. Biometrika 71:233–244

    MathSciNet  MATH  Google Scholar 

  • Lemonte AJ, Cordeiro GM, Moreno G (2012) Bartlett corrections in Birnbaum-Saunders nonlinear regression models. J Stat Comput Simul 82:927–935

    Article  MathSciNet  Google Scholar 

  • Lin JG, Zhu LX, Xie FG (2009) Heteroscasticity diagnostics for \(t\) linear regression models. Metrika 70:59–77

    Article  MathSciNet  Google Scholar 

  • Loose LH, Bayer FM, Liberal TL (2016) Bootstrap Bartlett corretion in inflated beta regression. Commun Stat Simul 46(4):2865–2879. doi:10.1080/03610918.2015.1065326

    Article  MATH  Google Scholar 

  • Maior VQS, Cysneiros FJA (2016) SYMARMA: a new dynamic model for temporal data on conditional symmetric distribution. Stat Pap. doi:10.1007/s00362-016-0753-z

    Article  MathSciNet  Google Scholar 

  • Melo TFN, Ferrari SLP, Cribari-Neto F (2009) Improved test inference in mixed linear models. Comp Stat Data Anal 53:2573–2582

    Article  Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  • Pace L, Salvan A (1997) Principles of statistical inference from a Neo-Fisherian perspective. World Scientific, Singapore

    Book  Google Scholar 

  • Rocke DM (1989) Bootstrap Bartlett adjustment in seemingly unrelated regression. J Am Stat Assoc 84:598–601

    Article  MathSciNet  Google Scholar 

  • Simonoff JS, Tsai CH (1994) Use of modified profile likelihood for improved tests of constancy of variance in regression. Appl Stat 43:357–370

    Article  MathSciNet  Google Scholar 

  • Stein MC, Silva MF, Duczmal LH (2014) Alternatives to the usual likelihood ratio test in mixed linear models. Comp Stat Data Anal 69:184–197

    Article  MathSciNet  Google Scholar 

  • Uribe-Opazo MA, Ferrari SLP, Cordeiro GM (2008) Improved score test in symmetric linear regression model. Commun Stat Theory Methods 37:261–276

    Article  MathSciNet  Google Scholar 

  • Vanegas LH, Rondon LM, Cysneiros FJA (2013) Assessing robustness of inference in symmetrical nonlinear regression models. Commun Stat Theory Methods 42:1692–1711

    Article  MathSciNet  Google Scholar 

  • Wei BL (1998) Exponential family nonlinear models. Springer, Singapore

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their constructive comments, which helped to improve this manuscript. Also, we gratefully acknowledge the financial support of CAPES, CNPq, FAPEMIG and FACEPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana C. Araújo.

Appendices

Appendix A

In this appendix we obtain the matrix \(j^*({\varvec{\delta }}; \varvec{\hat{\beta }_\delta }, \hat{\gamma }_\delta )\) expressed in (3) which denotes the observed information matrix for the nuisance parameters \(({\varvec{\beta }}^\top , \gamma )^\top . \) We can express \(j^*({\varvec{\delta }}; \varvec{\hat{\beta }_\delta }, \hat{\gamma }_\delta )\) by

$$\begin{aligned} j^{*}({\varvec{\delta }}; \varvec{\hat{\beta }_\delta },\hat{\gamma }_{{\varvec{\delta }}}) = - \left( \begin{array}{cc} j^{*}_{\beta \beta } &{} \varvec{0} \\ \varvec{0} &{} j^{*}_{\gamma \gamma } \end{array} \right) , \end{aligned}$$

where \(j^{*}_{\beta \beta }\) is a square matrix of order p whose entries are given by

$$\begin{aligned} j^{*}_{\beta \beta } = -\frac{\partial ^2 l^*(\varvec{y};{\varvec{\theta }}^*)}{\partial \beta _j \partial \beta _l} = -\frac{1}{\gamma } \sum _{\ell =1}^{n} t(z_\ell )^{(2)} q_\ell (j,l)_\ell + \frac{1}{\gamma ^{1/2}}\sum _{\ell =1}^n t(z_\ell )^{(1)}q_\ell ^{1/2}(jl)_\ell \end{aligned}$$

and

$$\begin{aligned} j^{*}_{\gamma \gamma } = -\frac{\partial ^2 l^*(\varvec{y};{\varvec{\theta }}^*)}{\partial \gamma ^2} = - \frac{n}{2 \gamma ^2} - \frac{3}{4 \gamma ^2} \sum _{\ell =1}^n t(z_\ell )^{(1)}z_\ell - \frac{1}{4 \gamma ^2} \sum _{\ell =1}^n t(z_\ell )^{(2)}z_\ell ^2 \end{aligned}$$

is a scalar, with \(\varvec{\theta ^*}=({\varvec{\beta }}^\top , {\varvec{\delta }}^\top ,\gamma )^\top \,\,q_\ell =\frac{(\prod _{s=1}^n m_s)^{1/n}}{m_\ell }\), \((j,l)_\ell = (\partial \mu _\ell /\partial \beta _j)\,\,(\partial \mu _\ell / \partial \beta _l)\) and \((jl)_\ell =\partial ^2 \mu _\ell / \partial \beta _j \partial \beta _l, \ j,l=1,\ldots ,p.\)

Appendix B

In this appendix we present the required derivatives of the log-likelihood function in (2) up to the fourth order and their respective moments, considering \(m_\ell =\exp (\varvec{\omega }_\ell ^\top {\varvec{\delta }}),\) to obtain the constants c and \(c_m\) from the Bartlett correction factors. For this, we introduce the following notation: \(\lambda _{rs}=E(\partial ^2 l/\partial {\varvec{\theta }}_r \partial {\varvec{\theta }}_s)\), \(\lambda _{rst}=E(\partial ^3 l/\partial {\varvec{\theta }}_r \partial {\varvec{\theta }}_s \partial {\varvec{\theta }}_t),\) etc, \(a, b, c,\ldots \) index parameters of interest \({\varvec{\delta }}\), ij, \(l,\ldots \) index nuisance parameters \({\varvec{\beta }}\) and \(r,s,t,\ldots \) index all \(p+q+1\) parameters of the model. Thus, we have

$$\begin{aligned} \lambda _{ab \gamma }= & {} \frac{\varDelta _1}{\gamma }\sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_{ab},\ \ \lambda _{acd} = \varDelta _1 \sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_{acd},\\ \lambda _{abcd}= & {} \varDelta _2 \sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_{abcd},\\ \lambda _{\gamma \gamma }= & {} (\varDelta _4 \gamma ^2)^{-1}, \ \ \lambda _{ija}= \frac{1}{2\gamma } (\delta _{(0,0,1,0,1)}+2\delta _{(0,1,0,0,0)})\sum _{\ell =1}^n \varvec{q}_{\ell ab},\\ \lambda _{abij}= & {} \frac{1}{\gamma }\varDelta _6\sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_{ab}q_\ell (i,j)_\ell + \frac{1}{\gamma }\varDelta _7\sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_{ab}(i,j)_\ell ,\\ \lambda _{ab\gamma \gamma }= & {} \frac{\varDelta _8}{\gamma ^2}\sum _{\ell =1}^n(\varvec{\omega }_\ell - \bar{\varvec{\omega }})_{ab} \quad \ \text{ and }\\ \lambda _{ai}= & {} \lambda _{a\gamma }=\lambda _{i\gamma }= \lambda _{ai\gamma }=\lambda _{abi}=\lambda _{a\gamma \gamma }=0, \end{aligned}$$

and the derived cumulants required to calculate c and \(c_m\) are given by:

$$\begin{aligned} (\lambda _{\gamma \gamma })_\gamma= & {} \frac{\varDelta _3}{\gamma ^3}, \ \ (\lambda _{ab \gamma })_\gamma = - \frac{\varDelta _1}{\gamma ^2}\sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_{ab},\\ (\lambda _{ija})_b= & {} \frac{1}{2\gamma }(\delta _{(0,0,1,0,1)}+2\delta _{(0,1,0,0,0)})\sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_{ab}q_l(i,j)_\ell \ \text{ and }\\ (\lambda _{ac})_d= & {} (\lambda _{ac})_{bd} = (\lambda _{acd})_b = \lambda _{iab}^{(c)} = (\lambda _{iab})_j=\lambda _{ai}^{(bj)}=\lambda _{a\gamma \gamma }^{(b)}=\lambda _{a\gamma \gamma }^{(\gamma )}=0. \end{aligned}$$

Appendix C

Here we obtain in detail the expression c for the Bartlett correction factor for the LR statistic. As defined in Sect. 3.1, the Bartlett correction factor is expressed by \(1+c/k,\) where

$$\begin{aligned} c=\epsilon _{p,k}-\epsilon _p. \end{aligned}$$

From Lawley’s expansion (1956), we have that \(E(LR)=k+\epsilon _{p,k}-\epsilon _p+O(n^{-2}),\) where

$$\begin{aligned} \epsilon _{p,k}=\sum _{{\varvec{\theta }}^*} (l_{rstu}-l_{rstuvw}), \end{aligned}$$
(6)

being

$$\begin{aligned} l_{rstu}= & {} \lambda ^{rs}\lambda ^{tu} \left\{ \frac{\lambda _{rstu}}{4} - \lambda _{rst}^{(u)}+\lambda _{rt}^{(su)} \right\} \ \text{ and }\\ l_{rstuvw}= & {} \lambda ^{rs}\lambda ^{tu}\lambda ^{vw} \left\{ \lambda _{rtv} \left( \frac{\lambda _{suw}}{6}-\lambda _{sw}^{(u)} \right) \right. \nonumber \\&+\left. \lambda _{rtu}\left( \frac{\lambda _{svw}}{4} - \lambda _{sw}^{(v)} +\lambda _{rt}^{(v)}\lambda _{sw}^{(u)} +\lambda _{rt}^{(u)}\lambda _{sw}^{(v)} \right) \right\} , \end{aligned}$$

where \(-\lambda ^{rs}\) is the (rs) element from the inverse of Fisher’s information matrix. The sum in (6) varies in all components of \({\varvec{\theta }}^*\). The expression \(\epsilon _p\) is obtained from (6) considering that the sum varies across all nuisance parameters. Thus, we can write c as

$$\begin{aligned} c=\epsilon _k ({\varvec{\delta }}) +\epsilon _{p,k}({\varvec{\beta }},{\varvec{\delta }})+\epsilon _{p,k}({\varvec{\delta }},\gamma )+\epsilon _{p,q}({\varvec{\beta }},{\varvec{\delta }},\gamma ), \end{aligned}$$

where \(\epsilon _k ({\varvec{\delta }})\) indicates that the sum (6) was performed on all components of \({\varvec{\delta }}\), analogously to other cases, considering the respective parameters. Replacing \(\lambda '\)s obtained in Appendix B in the \(\epsilon '\)s and after of extensive algebra, we have the constant c in (4).

Appendix D

Finally, here we obtain the constant \(c_m\) for the Bartlett correction factor for the \(LR_m\) statistic, considering Equation (5) of Ferrari et al. (2004). Thus, we have that \(c_m\) can be expressed by

$$\begin{aligned} c_m= & {} \frac{1}{4} \lambda ^{ab}\lambda ^{cd}\lambda _{abcd} - \lambda ^{ab}\lambda ^{cd}(\lambda _{acd})_b + \lambda ^{ab}\lambda ^{cd}(\lambda _{ac})_{db} -\lambda ^{ij}\lambda ^{ab}(\lambda _{iab})_j \nonumber \\&-\, \lambda ^{\gamma \gamma }\lambda ^{ab}(\lambda _{ab\gamma })_\gamma - \left( \frac{1}{4} \lambda ^{ab}\lambda ^{cd}\lambda ^{ef} + \frac{1}{2} \lambda ^{ab}\lambda ^{cf}\lambda ^{de} -\frac{1}{3} \lambda ^{ab}\lambda ^{cf}\lambda ^{de} \right) \lambda _{acd}\lambda _{bef} \nonumber \\&+\,(\lambda ^{ab}\lambda ^{cd}\lambda ^{ef}+\lambda ^{ab}\lambda ^{cf}\lambda ^{de})\lambda _{acd}(\lambda _{be})_f - (\lambda ^{ab}\lambda ^{cd}\lambda ^{ef} +\lambda ^{ab}\lambda ^{cf}\lambda ^{de})(\lambda _{ac})_d(\lambda ^{be})_f \nonumber \\&-\, \left( \frac{1}{4} \lambda ^{ij}\lambda ^{ab}\lambda ^{cd} + \frac{1}{2} \lambda ^{ij}\lambda ^{ad}\lambda ^{bc} \right) \lambda _{iab}\lambda _{jcd} + (\lambda ^{ij}\lambda ^{ab}\lambda ^{kl})\lambda _{iab}(\lambda _{jk})_l \nonumber \\&- \left( \frac{1}{4}\lambda ^{\gamma \gamma }\lambda ^{ab}\lambda ^{cd} + \frac{1}{2} \lambda ^{\gamma \gamma }\lambda ^{ad}\lambda ^{bc} \right) \lambda _{ab \gamma }\lambda _{cd \gamma } + (\lambda ^{\gamma \gamma }\lambda ^{ab}\lambda ^{\gamma \gamma })\lambda _{ab\gamma }(\lambda _{\gamma \gamma })_{\gamma }. \end{aligned}$$
(7)

Replacing the cumulant \(\lambda '\)s obtained in Appendix B in Equation (7) and after intense algebra, we have

$$\begin{aligned} c_m= & {} \frac{1}{4} \varDelta _2 \sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_a \lambda ^{ab}(\varvec{\omega }_\ell - \bar{\varvec{\omega }})_b(\varvec{\omega }_\ell - \bar{\varvec{\omega }})_c \lambda ^{cd}(\varvec{\omega }_\ell - \bar{\varvec{\omega }})_d\\&- \frac{1}{4} \varDelta _4 \varDelta _1^2 \sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_a \lambda ^{ab} (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_b (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_c \lambda ^{cd}(\varvec{\omega }_\ell - \bar{\varvec{\omega }})_d\\&- \frac{1}{4}\varDelta ^2_1 \sum _{\ell =1}^n \sum _{s=1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_a\lambda ^{ab}(\varvec{\omega }_s - \bar{\varvec{\omega }})_a (\varvec{\omega }_s - \bar{\varvec{\omega }})_c \lambda ^{cd}(\varvec{\omega }_\ell - \bar{\varvec{\omega }})_d (\varvec{\omega }_s - \bar{\varvec{\omega }})_e \lambda ^{ef}(\varvec{\omega }_s - \bar{\varvec{\omega }})_f\\&- \frac{1}{6} \varDelta _1^2 \sum _{\ell =1}^n\sum _{s=1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_a \lambda ^{ab}(\varvec{\omega }_s - \bar{\varvec{\omega }})_b (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_c \lambda ^{cf}(\varvec{\omega }_s - \bar{\varvec{\omega }})_f (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_d \lambda ^{de}(\varvec{\omega }_s - \bar{\varvec{\omega }})_e\\&+ \varDelta _1 \varDelta _4 \sum _{s=1}^n (\varvec{\omega }_s - \bar{\varvec{\omega }})_a\lambda ^{ab}(\varvec{\omega }_s - \bar{\varvec{\omega }})_b + \varDelta _1 \varDelta _3 \varDelta _4^2 \sum _{\ell =1}^n (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_a \lambda ^{ab} (\varvec{\omega }_\ell - \bar{\varvec{\omega }})_b\\&- \frac{1}{2} \varDelta _1^2 \varDelta _4 \sum _{\ell =1}^n\sum _{s=1}^n (\varvec{\omega }_s - \bar{\varvec{\omega }})_a \lambda ^{ad}(\varvec{\omega }_s - \bar{\varvec{\omega }})_d(\varvec{\omega }_\ell - \bar{\varvec{\omega }})_b\lambda ^{bc}(\varvec{\omega }_s - \bar{\varvec{\omega }})_c, \end{aligned}$$

where \((\varvec{\omega }_\ell - \bar{\varvec{\omega }})_i = \omega _{\ell i}-\bar{\omega }_i,\) with \(i=a,b,c,d.\) In matrix notation, we have

$$\begin{aligned} c_m= & {} \frac{1}{4} \varDelta _2 \text{ tr } (\varvec{H_d^2}) - \frac{1}{4} \varDelta _1^2 \varDelta _4 [\text{ tr }(\varvec{H_d})]^2 + \frac{1}{4} \varDelta ^2_1 \varvec{\iota }^\top \varvec{H_d H H_d} \varvec{\iota } + \frac{1}{6} \varDelta ^2_1 \varvec{\iota }^\top \varvec{H^{(3)}}\varvec{\iota } \nonumber \\&-\, \varDelta _1 \varDelta _4 \text{ tr }(\varvec{H_d}) - \varDelta _1 \varDelta _3 \varDelta _4^2 \text{ tr }(\varvec{H_d}) - \frac{1}{2} \varDelta ^2_1 \varDelta _4 \varvec{\iota }^\top \varvec{H^{(2)}}\varvec{\iota }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, M.C., Cysneiros, A.H.M.A. & Montenegro, L.C. Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Stat Papers 61, 167–188 (2020). https://doi.org/10.1007/s00362-017-0933-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0933-5

Keywords

Navigation