Skip to main content
Log in

Elliptical linear mixed models with a covariate subject to measurement error

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper we extend linear mixed models with elliptical errors by adding a covariate subject to measurement error in the linear predictor. The former class is defined appropriately so that the joint marginal distribution of the response and the observed covariate subject to measurement error is also elliptical. Thus, numerical integration methods are not required to obtain the marginal model and the mean and the variance–covariance structures of the hierarchical model are preserved. A kurtosis flexibility is allowed for each joint marginal distribution and since the conditional distributions are also elliptical, the predictions of the random effects as well as of the covariate subject to measurement error may be performed in a similar way of the normal case. A reweighed iterative process based on the maximum likelihood method is derived for obtaining the parameter estimates, which appear to be robust against outlying observations in the sense of the Mahalanobis distance. In order to assess the sample properties of the maximum likelihood parameter estimates as well as their asymptotic standard errors, a simulation study is performed under different parameter settings and error distributions. Goodness-of-fit measures based on the Mahalanobis distance are presented and normal curvatures of local influence are derived under three usual perturbation schemes, which are selected appropriately. Finally, an illustrative example previously analyzed under normal error models is reanalyzed by considering heavy-tailed error models. The diagnostic procedures are applied for comparing the fitted models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at statistical models identification. IEEE Trans Autom Control 19:716–722

    Article  MathSciNet  Google Scholar 

  • Arellano-Valle RB (2010) On the information matrix of the multivariate skew-\(t\) model. METRON Int J Stat 68:371–386

    MathSciNet  MATH  Google Scholar 

  • Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influence data and sources of collinearity. Wiley, New York

    Book  Google Scholar 

  • Buonaccorsi JP (2010) Measurement error: models, methods, and applications. Chapman and Hall, London

    Book  Google Scholar 

  • Cao CZ, Lin JG, Zhu LX (2010) Heteroscedasticity and/or autocorrelation diagnostics in nonlinear models with AR(1) and symmetrical errors. Stat Pap 51:813–836

    Article  MathSciNet  Google Scholar 

  • Cook RD (1986) Assessment of local influence (with discussion). J R Stat Soc B 48:133–169

    MATH  Google Scholar 

  • Cox D, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R Stat Soc B 49:1–39

    MathSciNet  MATH  Google Scholar 

  • Cui H, Ng KW, Zhu L (2004) Estimation in mixed effects model with errors in variables. J Multivar Anal 91:53–73

    Article  MathSciNet  Google Scholar 

  • Demidenko E (2004) Mixed models: theory and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman & Hall, London

    Book  Google Scholar 

  • Fuller WA (2006) Measurement error models. Wiley, New York

    MATH  Google Scholar 

  • Galea M, Giménez P (2016) Local influence diagnostics for the test of man-variance efficiency and systematic risks in the capital asset pricing model. Stat Pap. doi:10.1007/s00362-016-0838-8

    Article  MATH  Google Scholar 

  • Galea M, Paula GA, Uribe-Opazo M (2003) On influence diagnostic in univariate elliptical linear regression models. Stat Pap 44:23–45

    Article  MathSciNet  Google Scholar 

  • Härdle WK, Simar L (2012) Applied multivariate statistical analysis, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Harrison D, Rubinfeld DL (1978) Hedonic prices and the demand for clean air. J Environ Econ Manag 5:81–102

    Article  Google Scholar 

  • Ibacache-Pulgar G, Paula GA, Galea M (2012) Influence diagnostics for elliptical semiparametric mixed models. Stat Model 12:165–170

    Article  MathSciNet  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974

    Article  Google Scholar 

  • Lange KL, Little RJ, Taylor JMG (1989) Robust statistical modeling using the \(t\) distribution. J Am Stat Assoc 84:881–896

    MathSciNet  Google Scholar 

  • Lemonte AJ, Patriota AG (2011) Multivariate elliptical models with general parametrization. Stat Methodol 8:389–400

    Article  MathSciNet  Google Scholar 

  • Lindsey JK (1999) Multivariate elliptically contoured distributions for repeated measurements. Biometrics 55:1277–1280

    Article  Google Scholar 

  • Longford NT (1993) Random coefficient models. Oxford University Press, New York

    MATH  Google Scholar 

  • Nakamura T (1990) Corrected score function for errors-in-variables models: methodology and application to generalized linear models. Biometrika 77:127–137

    Article  MathSciNet  Google Scholar 

  • Osorio F, Paula GA, Galea M (2007) Assessment of local influence in elliptical linear models with longitudinal structure. Comput Stat Data Anal 51:4354–4368

    Article  MathSciNet  Google Scholar 

  • Pinheiro JC, Liu C, Wu YN (2001) Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate \(t\)-distribution. J Comput Graph Stat 10:249–276

    Article  MathSciNet  Google Scholar 

  • Poon W, Poon YS (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc B 61:51–61

    Article  MathSciNet  Google Scholar 

  • Relvas CEM, Paula GA (2016) Partially linear models with first-order autoregressive symmetric errors. Stat Pap 57:795–825

    Article  MathSciNet  Google Scholar 

  • Riquelme M, Bolfarine H, Galea M (2015) Robust linear functional mixed models. J Multivar Anal 132:82–98

    Article  MathSciNet  Google Scholar 

  • Russo C, Paula GA, Aoki R (2009) Influence diagnostics in nonlinear mixed-effects elliptical models. Comput Stat Data Anal 53:4143–4156

    Article  MathSciNet  Google Scholar 

  • Savalli C, Paula GA, Cysneiros FJA (2006) Assessment of variance components in elliptical linear mixed models. Stat Model 6:59–76

    Article  MathSciNet  Google Scholar 

  • Staudenmayer J, Lake EE, Wand MP (2009) Robustness for general design mixed models using the \(t\)-distribution. Stat Model 9:235–255

    Article  MathSciNet  Google Scholar 

  • Wang N, Heckman N (2009) Identifiability in linear mixed models. Technical report. Department of Statistics, University of British Columbia, Vancouver

    Google Scholar 

  • Welsh AH, Richardson AM (1997) Approaches of the robust estimation of mixed models. In: Maddala GS, Rao CR (eds) Handbook of statistics, vol 15. Elsevier, Amsterdam, pp 343–384

    MATH  Google Scholar 

  • Wu L (2010) Mixed effects models for complex data. Chapman and Hall, New York

    MATH  Google Scholar 

  • Zare K, Rasekh A (2011) Diagnostic measures for linear mixed measurement error models. SORT 35:125–144

    MathSciNet  MATH  Google Scholar 

  • Zhang D, Lin X, Raz J, Sowers M (1998) Semiparametric stochastic mixed models for longitudinal data. J Am Stat Assoc 93:710–719

    Article  MathSciNet  Google Scholar 

  • Zhong XP, Fung WK, Wei BC (2002) Estimation in linear models with random effects and errors-in-variables. Ann Inst Stat Math 54:595–606

    Article  MathSciNet  Google Scholar 

  • Zhu H, Ibrahim JG, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35:2565–2588

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq and FAPESP, Brazil and FONDECYT-Chile 1150325. The authors are grateful to the reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto A. Paula.

Appendices

Appendix A: Derivation of the Fisher information matrix

Consider the Mahalanobis distance expressed in the following form:

$$\begin{aligned} \delta _i= & {} ({\varvec{W}}_i-{\varvec{\mu }}_{iW})^{\top } {\varvec{V}}^{-\frac{1}{2}}_i{\varvec{V}}^{-\frac{1}{2}}_i({\varvec{W}}_i-{\varvec{\mu }}_{iW})\\= & {} {\varvec{r}}_i^{\top } {\varvec{V}}^{-\frac{1}{2}}_i{\varvec{V}}^{-\frac{1}{2}}_i{\varvec{r}}_i\\= & {} {\varvec{z}}_i^{\top } {\varvec{z}}_i\\= & {} \Vert {\varvec{z}}_i\Vert ^2, \end{aligned}$$

where \(\Vert {\varvec{z}}_i\Vert \) denotes the norm of \({\varvec{z}}_i={\varvec{\Sigma }}^{-\frac{1}{2}}_i{\varvec{r}}_i\) and \({\varvec{z}}_i \mathop {\sim }\limits ^{\mathrm {ind}}\mathrm{El}_{m_i}(\mathbf{0}, {\varvec{I}}_{m_i})\), \(i=1, \ldots , n\).

From Fang et al. (1990) one has

$$\begin{aligned} \mathrm{E}\left\{ W_g({\varvec{\delta }}_i)\Vert {\varvec{z}}_i\Vert ^2\right\}= & {} -\frac{m_i}{2},\\ \mathrm{E}\left\{ W^2_g({\varvec{\delta }}_i)\Vert {\varvec{z}}_i\Vert ^2\right\}= & {} d_{g_i} \ \ \mathrm{and} \\ \mathrm{E}\left\{ W^2_g({\varvec{\delta }}_i)\Vert {\varvec{z}}_i\Vert ^4\right\}= & {} f_{g_i}. \end{aligned}$$

In particular, for the normal distribution \(d_{g_i}=\frac{m_i}{2}\) and \(f_{g_i}=m_i(m_i+1)\), whereas for the Student-t distribution with \(\nu \) degrees of freedom these quantities become \(d_{g_i}=\frac{m_i}{2}\frac{\nu +2m_i}{\nu +2m_i+2}\) and \(f_{g_i}=m_i(m_i+1)\frac{\nu +2m_i}{\nu +2m_i+2}\). Expression for \(d_{g_i}\) and \(f_{g_i}\) for other elliptical distributions may be found, for instance, in Osorio et al. (2007).

1.1 Fisher information for \(\gamma \)

The Fisher information for the parameter \(\gamma \) is defined by

$$\begin{aligned} F_{\gamma \gamma }({\varvec{\theta }})= \mathrm{E}\left\{ U^\gamma ({\varvec{\theta }}) U^\gamma ({\varvec{\theta }})\right\} = \sum _{i=1}^n \mathrm{E}\left\{ U^\gamma _i({\varvec{\theta }}) U^\gamma _i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^\gamma _i({\varvec{\theta }})U^\gamma _i({\varvec{\theta }})\right\}= & {} \frac{{\varvec{a}}_i^2}{4}\left( \frac{f_{g_i}}{m_i(m_i+1)}-1\right) + \frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }{\varvec{V}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) \\&+ \, 2d_{g_i}\left( \begin{array}{c} \mu \mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) ^{\top }{\varvec{V}}^{-1}_i\left( \begin{array}{c} \mu \mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) , \quad i=1,\ldots ,n, \end{aligned}$$

with \(\mathbf{0}\) being an \(m_i \times 1\) vector of zeros.

1.2 Fisher information submatrix for \({\varvec{\beta }}\)

The Fisher information submatrix for the parameter vector \({\varvec{\beta }}\) is defined by

$$\begin{aligned} {\varvec{F}}_{\beta \beta }({\varvec{\theta }})=\mathrm{E}\left\{ {\varvec{U}}^{\beta }({\varvec{\theta }}) {\varvec{U}}^{\beta }{({\varvec{\theta }})^{\top }}\right\} =\sum _{i=1}^n \mathrm{E}\left\{ {\varvec{U}}^{\beta }_i({\varvec{\theta }}) {\varvec{U}}^{\beta }_i({\varvec{\theta }})^{\top }\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ {\varvec{U}}^{\beta }_i({\varvec{\theta }}) {\varvec{U}}^{\beta }_i({\varvec{\theta }})^{\top }\right\}= & {} \frac{2d_{g_i}}{m_i}\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^{\top }{\varvec{V}}^{-1}_i\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) , \end{aligned}$$

and \({\varvec{X}}_i\) is an \(m_i \times p\) matrix with the explanatory variable values for the ith observation, \(i=1,\ldots ,n\).

1.3 Fisher information for \(\mu \)

The Fisher information for the parameter \(\mu \) is defined by

$$\begin{aligned} F_{\mu \mu }({\varvec{\theta }})= \mathrm{E}\left\{ U^\mu ({\varvec{\theta }}) U^\mu ({\varvec{\theta }})\right\} = \sum _{i=1}^n \mathrm{E}\left\{ U^\mu _i({\varvec{\theta }}) U^\mu _i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^\mu _i({\varvec{\theta }}) U^{\mu }_i({\varvec{\theta }})\right\}= & {} \frac{2d_{g_i}}{m_i}\left( \begin{array}{c} \gamma \mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top {\varvec{V}}^{-1}_i\left( \begin{array}{c} \gamma \mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) , \ i=1,\ldots ,n. \end{aligned}$$

1.4 Fisher information for \(\sigma ^2_u\)

The Fisher information for the parameter \(\sigma ^2_u\) is defined by

$$\begin{aligned} F_{\sigma ^2_u \sigma ^2_u}({\varvec{\theta }})= \mathrm{E}\left\{ U^{\sigma ^2_u}({\varvec{\theta }}) U^{\sigma ^2_u}({\varvec{\theta }})\right\} = \sum _{i=1}^n \mathrm{E}\left\{ U^{\sigma ^2_u}_i({\varvec{\theta }}) U^{\sigma ^2_u}_i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^{\sigma ^2_u}_i({\varvec{\theta }})U^{\sigma ^2_u}_i({\varvec{\theta }})\right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits ^2\left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}{\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.5 Fisher information for \(\sigma ^2\)

The Fisher information for the parameter \(\sigma ^2\) is defined by

$$\begin{aligned} F_{\sigma ^2 \sigma ^2}({\varvec{\theta }})= \mathrm{E}\left\{ U^{\sigma ^2}({\varvec{\theta }}) U^{\sigma ^2}({\varvec{\theta }})\right\} = \sum _{i=1}^n \mathrm{E}\left\{ U^{\sigma ^2}_i({\varvec{\theta }}) U^{\sigma ^2}_i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^{\sigma ^2}_i({\varvec{\theta }})U^{\sigma ^2}_i({\varvec{\theta }})\right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits ^2\left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}{\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.6 Fisher information submatrix for \({\varvec{\tau }}\)

The Fisher information submatrix for the parameter vector \({\varvec{\tau }}\) is defined by

$$\begin{aligned} {\varvec{F}}_{\tau \tau }({\varvec{\theta }})=\mathrm{E}\left\{ {\varvec{U}}^{\tau }({\varvec{\theta }}) {\varvec{U}}^{\tau }({\varvec{\theta }})^{\top }\right\} , \end{aligned}$$

with the (jl)th element being expressed as

$$\begin{aligned} \mathrm{E}\left\{ U^{\tau _j}({\varvec{\theta }})U^{\tau _l}({\varvec{\theta }})\right\} = \sum _{i=1}^n \mathrm{E}\left\{ U^{\tau _j}_i({\varvec{\theta }})U^{\tau _l}_i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^{\tau _j}_i({\varvec{\theta }})U^{\tau _l}_i({\varvec{\theta }})\right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\right) \mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _l}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _j}{\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _l}\right) , \ i=1,\ldots ,n. \end{aligned}$$

1.7 Fisher information submatrix for \(\gamma \) and \({\varvec{\beta }}\)

The Fisher information submatrix for the parameter \(\gamma \) and the vector \({\varvec{\beta }}\) is defined by

$$\begin{aligned} {\varvec{F}}_{\gamma \beta }({\varvec{\theta }})=\mathrm{E}\left\{ U^{\gamma }({\varvec{\theta }}) {\varvec{U}}^{\beta }({\varvec{\theta }})^{\top }\right\} = \sum _{i=1}^n \mathrm{E}\left\{ U^{\gamma }_i({\varvec{\theta }}){\varvec{U}}^{\beta }_i({\varvec{\theta }})^{\top }\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^{\gamma }_i({\varvec{\theta }}){\varvec{U}}^{\beta }_i({\varvec{\theta }})^{\top }\right\}= & {} \frac{2d_{g_i}}{m_i}\left( \begin{array}{c} \mu \mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) ^{\top }{\varvec{V}}^{-1}_i\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) , \ i=1,\ldots ,n. \end{aligned}$$

1.8 Fisher information for \(\gamma \) and \(\mu \)

The Fisher information for the parameters \(\gamma \) and \(\mu \) is defined by

$$\begin{aligned} F_{\gamma \mu }({\varvec{\theta }})= \mathrm{E}\left\{ U^\gamma ({\varvec{\theta }}) U^\mu ({\varvec{\theta }})\right\} = \sum _{i=1}^n \mathrm{E}\left\{ U^\gamma _i({\varvec{\theta }}) U^\mu _i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^{\gamma }_i({\varvec{\theta }})U^{\mu }_i({\varvec{\theta }})\right\}= & {} \frac{2d_{g_i}}{m_i}\left( \begin{array}{c} \mu \mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) ^{\top }{\varvec{V}}^{-1}_i\left( \begin{array}{c} \gamma \mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.8.1 Fisher information for \(\gamma \) and \(\sigma ^2_u\)

The Fisher information for the parameters \(\gamma \) and \(\sigma ^2_u\) is defined by

$$\begin{aligned} F_{\gamma \sigma ^2_u}({\varvec{\theta }})= \sum _{i=1}^n \mathrm{E}\left\{ U^\gamma _i({\varvec{\theta }})U^{\sigma ^2_u}_i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^{\gamma }_i({\varvec{\theta }})U^{\sigma ^2_u}_i({\varvec{\theta }})\right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) \mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \gamma } {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.8.2 Fisher information for \(\gamma \) and \(\sigma ^2\)

The Fisher information for the parameters \(\gamma \) and \(\sigma ^2\) is defined by

$$\begin{aligned} F_{\gamma \sigma ^2}({\varvec{\theta }})= \sum _{i=1}^n \mathrm{E}\left\{ U^\gamma _i({\varvec{\theta }})U^{\sigma ^2}_i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^{\gamma }_i({\varvec{\theta }})U^{\sigma ^2}_i({\varvec{\theta }}) \right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) \mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \gamma }{\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.8.3 Fisher information submatrix for \(\gamma \) and \({\varvec{\tau }}\)

The Fisher information submatrix for the parameters \(\gamma \) and \({\varvec{\tau }}\) is defined by

$$\begin{aligned} {\varvec{F}}_{\gamma \tau }({\varvec{\theta }})= \sum _{i=1}^n \mathrm{E}\left\{ U^\gamma _i({\varvec{\theta }}){\varvec{U}}^\tau _i({\varvec{\theta }})^{\top }\right\} , \end{aligned}$$

where \(\mathrm{E}\left\{ U^\gamma _i({\varvec{\theta }}){\varvec{U}}^\tau _i({\varvec{\theta }})^{\top }\right\} \) is an \(1 \times (q+s)\) vector whose jth element is given by

$$\begin{aligned} \mathrm{E}\left\{ U^{\gamma }_i({\varvec{\theta }})U^{\tau _j}_i({\varvec{\theta }})\right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) \mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \gamma }{\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.8.4 Fisher information submatrix for \({\varvec{\beta }}\) and \(\mu \)

The Fisher information submatrix for the parameters \({\varvec{\beta }}\) and \(\mu \) is defined by

$$\begin{aligned} {\varvec{F}}_{\beta \mu }({\varvec{\theta }})= \sum _{i=1}^n\mathrm{E}\left\{ {\varvec{U}}^\beta _i({\varvec{\theta }}) U^{\mu }_i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ {\varvec{U}}^{\beta }_i({\varvec{\theta }})U^{\mu }_i({\varvec{\theta }})\right\}= & {} \frac{2d_{g_i}}{m_i}\left( \begin{array}{c} {\varvec{X}}_i\\ \mathbf{0} \\ \end{array}\right) ^{\top }{\varvec{V}}^{-1}_i\left( \begin{array}{c} \gamma \mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.8.5 Fisher information for \(\sigma ^2_u\) and \(\sigma ^2\)

The Fisher information for the parameters \(\sigma ^2_u\) and \(\sigma ^2\) is defined by

$$\begin{aligned} F_{\sigma ^2_u\sigma ^2}({\varvec{\theta }})=\sum _{i=1}^n \mathrm{E}\left\{ U^{\sigma ^2_u}_i({\varvec{\theta }}) U^{\sigma ^2}_i({\varvec{\theta }})\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}\left\{ U^{\sigma ^2_u}_i({\varvec{\theta }})U^{\sigma ^2}_i({\varvec{\theta }})\right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) \mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u} {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.8.6 Fisher information submatrix for \(\sigma ^2_u\) and \({\varvec{\tau }}\)

The Fisher information submatrix for the parameter \(\sigma ^2_u\) and the vector \({\varvec{\tau }}\) is defined by

$$\begin{aligned} {\varvec{F}}_{\sigma ^2_u\tau }({\varvec{\theta }})=\sum _{i=1}^n\mathrm{E}\left\{ U^{\sigma ^2_u}_i({\varvec{\theta }}) {\varvec{U}}^{\tau }_i({\varvec{\theta }})^{\top }\right\} , \end{aligned}$$

where \(\mathrm{E}\{U^{\sigma ^2_u}_i({\varvec{\theta }}){\varvec{U}}^\tau _i({\varvec{\theta }})^{\top }\}\) is an \(1 \times (q+s)\) vector whose jth element is given by

$$\begin{aligned} \mathrm{E}\left\{ U^{\sigma ^2_u}_i({\varvec{\theta }})U^{\tau _j}_i({\varvec{\theta }})\right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) \mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}{\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

1.9 Fisher information submatrix for \(\sigma ^2\) and \({\varvec{\tau }}\)

The Fisher information submatrix for the parameter \(\sigma ^2_u\) and the vector \({\varvec{\tau }}\) is defined by

$$\begin{aligned} {\varvec{F}}_{\sigma ^2\tau }({\varvec{\theta }})=\sum _{i=1}^n\mathrm{E}\left\{ U^{\sigma ^2}_i({\varvec{\theta }}) {\varvec{U}}^{\tau }_i({\varvec{\theta }})^{\top }\right\} , \end{aligned}$$

where \(\mathrm{E}\left\{ U^{\sigma ^2}_i({\varvec{\theta }}){\varvec{U}}^\tau _i({\varvec{\theta }})^{\top }\right\} \) is an \(1 \times (q+s)\) vector whose jth element is given by

$$\begin{aligned} \mathrm{E}\left\{ U^{\sigma ^2}_i({\varvec{\theta }})U^{\tau _j}_i({\varvec{\theta }})\right\}= & {} \frac{1}{4}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2} \right) \mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\right) \left\{ \frac{f_{g_i}}{m_i(m_i+1)}-1\right\} \\&+\,\frac{f_{g_i}}{2m_i(m_i+1)}\mathop {\mathrm{tr}}\nolimits \left( {\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}{\varvec{V}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\right) , \quad i=1,\ldots ,n. \end{aligned}$$

Applying similar calculation we may show the orthogonality between \({\varvec{\beta }}\) and \(({\varvec{\tau }}^{\top }, \sigma ^2_u, \sigma ^2)^{\top }\) as well as between \(\mu \) and \(({\varvec{\tau }}^{\top }, \sigma ^2_u, \sigma ^2)^{\top }\).

Appendix B: Derivation of the Hessian matrix

The Hessian matrix for \({\varvec{\theta }}\) may be expressed as

$$\begin{aligned} \ddot{{\varvec{L}}}({\varvec{\theta }})=\sum _{i=1}^n\ddot{{\varvec{L}}}_i({\varvec{\theta }}), \end{aligned}$$

where

$$\begin{aligned} \ddot{{\varvec{L}}}_i({\varvec{\theta }})= & {} \frac{\partial ^2L_i({\varvec{\theta }})}{\partial {\varvec{\theta }}\partial {\varvec{\theta }}^\top }\\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \ddot{L}_i^{\gamma \gamma } &{} \ddot{{\varvec{L}}}_i^{\gamma \beta } &{} \ddot{L}_i^{\gamma \mu } &{} \ddot{L}_i^{\gamma \sigma ^2_u} &{} \ddot{L}_i^{\gamma \sigma ^2} &{} \ddot{{\varvec{L}}}_i^{\gamma \tau }\\ \ddot{{\varvec{L}}}_i^{\beta \gamma } &{} \ddot{{\varvec{L}}}_i^{\beta \beta } &{} \ddot{{\varvec{L}}}_i^{\beta \mu } &{} \ddot{{\varvec{L}}}_i^{\beta \sigma ^2_u} &{} \ddot{{\varvec{L}}}_i^{\beta \sigma ^2} &{} \ddot{{\varvec{L}}}_i^{\beta \tau }\\ \ddot{L}_i^{\mu \gamma } &{} \ddot{{\varvec{L}}}_i^{\mu \beta } &{} \ddot{L}_i^{\mu \mu } &{} \ddot{L}_i^{\mu \sigma ^2_u} &{} \ddot{L}_i^{\mu \sigma ^2} &{} \ddot{{\varvec{L}}}_i^{\mu \tau }\\ \ddot{L}_i^{\sigma ^2_u\gamma } &{} \ddot{{\varvec{L}}}_i^{\sigma ^2_u\beta } &{} \ddot{L}_i^{\sigma ^2_u\mu } &{} \ddot{L}_i^{\sigma ^2_u\sigma ^2_u} &{} \ddot{L}_i^{\sigma ^2_u\sigma ^2} &{} \ddot{{\varvec{L}}}_i^{\sigma ^2_u\tau }\\ \ddot{L}_i^{\sigma ^2\gamma } &{} \ddot{{\varvec{L}}}_i^{\sigma ^2\beta } &{} \ddot{L}_i^{\sigma ^2\mu } &{} \ddot{L}_i^{\sigma ^2\sigma ^2_u} &{} \ddot{L}_i^{\sigma ^2\sigma ^2} &{} \ddot{{\varvec{L}}}_i^{\sigma ^2\tau }\\ \ddot{{\varvec{L}}}_i^{\tau \gamma } &{} \ddot{{\varvec{L}}}_i^{\tau \beta } &{} \ddot{{\varvec{L}}}_i^{\tau \mu } &{} \ddot{{\varvec{L}}}_i^{\tau \sigma ^2_u} &{} \ddot{{\varvec{L}}}_i^{\tau \sigma ^2} &{} \ddot{{\varvec{L}}}_i^{\tau \tau } \end{array}\right) . \end{aligned}$$

Below we derive the submatrices above evaluated at \(\hat{{\varvec{\theta }}}\). One has

$$\begin{aligned} \ddot{L}_i^{\gamma \gamma }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2L_i({\varvec{\theta }})}{\partial \gamma \partial \gamma }\right| _{\theta =\widehat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left\{ \widehat{{\varvec{V}}}^{-1}_i\frac{\partial {\varvec{V}}_i}{\partial \gamma }\widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right\} -\frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \widehat{{\varvec{V}}}_i^{-1}\frac{\partial ^2{\varvec{V}}_i}{\partial \gamma ^2}\right) \\&+\ W'_g(\widehat{\delta }_i)\left\{ -2\widehat{{\varvec{r}}}_i^\top {\varvec{V}}^{-1}_i\left( \begin{array}{c} \widehat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) +\widehat{{\varvec{r}}}_i^\top \frac{\partial {\varvec{V}}_i^{-1}}{\partial \gamma }\widehat{{\varvec{r}}}_i\right\} ^2\\&+\ W_g(\widehat{\delta }_i)\left\{ 2\left( \begin{array}{c} \widehat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) ^\top \widehat{{\varvec{V}}}^{-1}_i\left( \begin{array}{c} \widehat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) +4\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\widehat{{\varvec{V}}}_i^{-1}\left( \begin{array}{c} \widehat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) \right\} \\&+\ W_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\left\{ 2\frac{\partial {\varvec{V}}_i}{\partial \gamma }\widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }-\frac{\partial ^2{\varvec{V}}_i}{\partial \gamma ^2}\right\} \widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\beta \beta }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2\L _i({\varvec{\theta }})}{\partial {\varvec{\beta }}\partial {\varvec{\beta }}^\top }\right| _{\theta =\widehat{\theta }}\\= & {} 2\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \widehat{{\varvec{V}}}_i^{-1}\left\{ 2W'_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) +W_g(\widehat{\delta }_i)\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) \right\} , \end{aligned}$$
$$\begin{aligned} \ddot{L}_i^{\mu \mu }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \mu \partial \mu }\right| _{\theta =\widehat{\theta }}\\= & {} 2\left( \begin{array}{c} \widehat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \widehat{{\varvec{V}}}_i^{-1}\left\{ 2W'_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\left( \begin{array}{c} \widehat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) +W_g(\widehat{\delta }_i)\left( \begin{array}{c} \widehat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) \right\} , \end{aligned}$$
$$\begin{aligned} \ddot{L}_i^{\sigma ^2_u\sigma ^2_u}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \sigma ^2_u\partial \sigma ^2_u}\right| _{\theta =\widehat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) +W'_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i\\&+\ 2W_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{L}_i^{\sigma ^2\sigma ^2}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \sigma ^2\partial \sigma ^2}\right| _{\theta =\widehat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) +W'_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i\\&+\ 2W_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\tau \tau }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial {\varvec{\tau }}\partial {\varvec{\tau }}^\top }\right| _{\theta =\widehat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}}\widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\right) +W'_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}}\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i\\&+\ 2W_g(\widehat{\delta }_i)\widehat{{\varvec{r}}}_i^\top \widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\widehat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}}\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\gamma \beta }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \gamma \partial {\varvec{\beta }}^\top }\right| _{\theta =\hat{\theta }}\\= & {} \left\{ 2W'_g(\widehat{{\varvec{\delta }}}_i)\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i\widehat{{\varvec{r}}}^\top _i + W_g(\widehat{{\varvec{\delta }}}_i)\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \right\} \widehat{{\varvec{V}}}_i^{-1}\left\{ 2\left( \begin{array}{c} \widehat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) \right. \\&\left. + \frac{\partial {\varvec{V}}_i}{\partial \gamma }\widehat{{\varvec{V}}}_i^{-1}\widehat{{\varvec{r}}}_i\right\} , \end{aligned}$$
$$\begin{aligned} \ddot{L}_i^{\gamma \mu }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \gamma \partial \mu }\right| _{\theta =\hat{\theta }}\\= & {} 2W'_g(\hat{{\varvec{\delta }}}_i)\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\left\{ 2\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) +\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \\&+ 2W_g(\hat{{\varvec{\delta }}}_i)\left\{ \left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) -\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\left( \begin{array}{c} \mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) \right. \\&\left. + \left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$
$$\begin{aligned} \ddot{L}_i^{\gamma \sigma ^2_u}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \gamma \partial \sigma ^2_u}\right| _{\theta =\hat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) -\frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial ^2{\varvec{V}}_i}{\partial \gamma \partial \sigma ^2_u}\right) \\&-W'_g(\hat{\delta }_i)\left\{ \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \left\{ 2\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}^{-1}_i\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) +\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \\&-W_g(\hat{\delta }_i)\left\{ 2\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) + \hat{{\varvec{r}}}_i^\top \hat{{\varvec{G}}}_i^{\sigma ^2_u}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$

where \(\hat{{\varvec{G}}}_i^{\sigma ^2_u}=\frac{\partial ^2{\varvec{V}}_i^{-1}}{\partial \gamma \partial \sigma ^2_u}=\hat{{\varvec{V}}}_i^{-1}\left( \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }-\frac{\partial ^2{\varvec{V}}_i}{\partial \gamma \partial \sigma ^2_u} +\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) \hat{{\varvec{V}}}_i^{-1}\),

$$\begin{aligned} \ddot{L}_i^{\gamma \sigma ^2}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \gamma \partial \sigma ^2}\right| _{\theta =\hat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) -W_g(\hat{\delta }_i)\left\{ 2\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) + \hat{{\varvec{r}}}_i^\top \hat{{\varvec{G}}}_i^{\sigma ^2}\hat{{\varvec{r}}}_i\right\} \\&-W'_g(\hat{\delta }_i)\left\{ \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \left\{ 2\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}^{-1}_i\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) +\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$

where \(\hat{{\varvec{G}}}_i^{\sigma ^2}=\frac{\partial ^2{\varvec{V}}_i^{-1}}{\partial \gamma \partial \sigma ^2}=\hat{{\varvec{V}}}_i^{-1}\left( \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma } +\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) \hat{{\varvec{V}}}_i^{-1}\),

$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\gamma \tau }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \gamma \partial {\varvec{\tau }}}\right| _{\theta =\hat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) -W_g(\hat{\delta }_i)\left\{ 2\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}}\hat{{\varvec{V}}}_i^{-1}\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) + \hat{{\varvec{r}}}_i^\top \hat{{\varvec{G}}}_i^{\tau }\hat{{\varvec{r}}}_i\right\} \\&-\, W'_g(\hat{\delta }_i)\left\{ \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \left\{ 2\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}^{-1}_i\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) +\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$

where \(\hat{{\varvec{G}}}_i^{\tau }=\frac{\partial ^2{\varvec{V}}_i^{-1}}{\partial \gamma \partial {\varvec{\tau }}}=\hat{{\varvec{V}}}_i^{-1}\left( \frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma } +\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}}\right) \hat{{\varvec{V}}}_i^{-1}\),

$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\beta \mu }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial {\varvec{\beta }}\partial \mu }\right| _{\theta =\hat{\theta }}\\= & {} 2\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\left\{ W_g(\hat{{\varvec{\delta }}}_i)\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) +2W'_g(\hat{{\varvec{\delta }}}_i)\hat{{\varvec{r}}}_i\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$
$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\beta \sigma ^2_u}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial {\varvec{\beta }}\partial \sigma ^2_u}\right| _{\theta =\hat{\theta }}\\= & {} 2\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\left\{ W_g(\hat{{\varvec{\delta }}}_i){\varvec{I}}_{2m_i}+W'_g(\hat{{\varvec{\delta }}}_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\right\} \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\beta \sigma ^2}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial {\varvec{\beta }}\partial \sigma ^2}\right| _{\theta =\hat{\theta }}\\= & {} 2\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\left\{ W_g(\hat{{\varvec{\delta }}}_i){\varvec{I}}_{2m_i}+W'_g(\hat{{\varvec{\delta }}}_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\right\} \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\beta \tau }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial {\varvec{\beta }}\partial {\varvec{\tau }}^\top }\right| _{\theta =\hat{\theta }}\\= & {} 2\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\left\{ W_g(\hat{{\varvec{\delta }}}_i){\varvec{I}}_{2m_i}+W'_g(\hat{{\varvec{\delta }}}_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\right\} \frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{L}_i^{\mu \sigma ^2_u}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \mu \partial \sigma ^2_u}\right| _{\theta =\hat{\theta }}\\= & {} 2\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\left\{ W_g(\hat{{\varvec{\delta }}}_i){\varvec{I}}_{2m_i}+W'_g(\hat{{\varvec{\delta }}}_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\right\} \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{L}_i^{\mu \sigma ^2}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \mu \partial \sigma ^2}\right| _{\theta =\hat{\theta }}\\= & {} 2\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\left\{ W_g(\hat{{\varvec{\delta }}}_i){\varvec{I}}_{2m_i}+W'_g(\hat{{\varvec{\delta }}}_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\right\} \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\mu \tau }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \mu \partial {\varvec{\tau }}^\top }\right| _{\theta =\hat{\theta }}\\= & {} 2\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\left\{ W_g(\hat{{\varvec{\delta }}}_i){\varvec{I}}_{2m_i}+W'_g(\hat{{\varvec{\delta }}}_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\right\} \frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{L}_i^{\sigma ^2_u\sigma ^2}(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \sigma ^2_u\partial \sigma ^2}\right| _{\theta =\hat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) \\&+ \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\left\{ W'_g(\hat{\delta }_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1} + 2W_g(\hat{\delta }_i){\varvec{I}}_{2m_i}\right\} \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\sigma ^2_u\tau }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \sigma ^2_u\partial {\varvec{\tau }}^\top }\right| _{\theta =\hat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\right) \\&+ \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\left\{ W'_g(\hat{\delta }_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1} + 2W_g(\hat{\delta }_i){\varvec{I}}_{2m_i}\right\} \frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i \end{aligned}$$

and

$$\begin{aligned} \ddot{{\varvec{L}}}_i^{\sigma ^2\tau }(\hat{{\varvec{\theta }}})= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }})}{\partial \sigma ^2\partial {\varvec{\tau }}^\top }\right| _{\theta =\hat{\theta }}\\= & {} \frac{1}{2}\mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\right) \\&+\, \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\left\{ W'_g(\hat{\delta }_i)\hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1} + 2W_g(\hat{\delta }_i){\varvec{I}}_{2m_i}\right\} \frac{\partial {\varvec{V}}_i}{\partial {\varvec{\tau }}^\top }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i. \end{aligned}$$

Appendix C: Derivation of \({\varvec{\Delta }}\) matrix

1.1 Case-weight perturbation

In particular for the normal case we obtain

$$\begin{aligned} {\varvec{\Delta }}_{\gamma }= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \gamma \partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}\\= & {} -\frac{\sqrt{m_i}}{2}\left[ \mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) -\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\left\{ 2\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) +\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \right] , \end{aligned}$$
$$\begin{aligned} \left. {\varvec{\Delta }}_{\beta } = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial {\varvec{\beta }}\partial \omega _i}\right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=\sqrt{m_i}\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \left. {\varvec{\Delta }}_{\mu } = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \mu \partial \omega _i}\right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=\sqrt{m_i}\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \left. {\varvec{\Delta }}_{\sigma ^2_u} = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \sigma ^2_u\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-\frac{\sqrt{m_i}}{2} \left\{ \mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u} \right) -\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$
$$\begin{aligned} \left. {\varvec{\Delta }}_{\sigma ^2} = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \sigma ^2\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-\frac{\sqrt{m_i}}{2} \left\{ \mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2} \right) -\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \end{aligned}$$

and

$$\begin{aligned} \left. {\varvec{\Delta }}_{\tau _j} = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \tau _j\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-\frac{\sqrt{m_i}}{2} \left\{ \mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \tau _j} \right) -\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$

where \(\hat{\delta }_i=\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}^{-1}_i\hat{{\varvec{r}}}_i\) and \(\hat{{\varvec{r}}}_i={\varvec{W}}_i-\hat{{\varvec{\mu }}}_{iW}\), for \(j=1, \ldots , q+s\).

For the Student-t case we obtain

$$\begin{aligned} {\varvec{\Delta }}_{\gamma }= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \gamma \partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}\\= & {} -\frac{p_i}{2} \left[ \mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right) -v(\hat{\delta }_i)\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\left\{ 2\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) +\frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \right] , \end{aligned}$$
$$\begin{aligned} \left. {\varvec{\Delta }}_{\beta } = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial {\varvec{\beta }}\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=p_i v(\hat{\delta }_i)\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \left. {\varvec{\Delta }}_{\mu } = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \mu \partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=p_i v(\hat{\delta }_i)\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$
$$\begin{aligned} \left. {\varvec{\Delta }}_{\sigma ^2} = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \sigma ^2_u\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-\frac{p_i}{2} \left\{ \mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\right) - v(\hat{\delta }_i)\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$
$$\begin{aligned} \left. {\varvec{\Delta }}_{\sigma ^2} = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \sigma ^2 \partial \omega _i}\right| _{\theta =\widehat{\theta },\ \omega =\omega _0}= -\frac{p_i}{2}\left\{ \mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\right) -v(\hat{\delta }_i)\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1} \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \end{aligned}$$

and

$$\begin{aligned} \left. {\varvec{\Delta }}_{\tau _j} = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \tau _j\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-\frac{p_i}{2} \left\{ \mathop {\mathrm{tr}}\nolimits \left( \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \tau _j} \right) -v(\hat{\delta }_i)\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} , \end{aligned}$$

where \(p_i=\frac{2m_i+\nu }{2}\sqrt{\varPsi '\left( \frac{\nu }{2}\right) - \varPsi '\left( \frac{\nu +2m_i}{2}\right) }\), \(\hat{\delta }_i=\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}^{-1}_i\hat{{\varvec{r}}}_i\) and \(\hat{{\varvec{r}}}_i={\varvec{W}}_i-\hat{{\varvec{\mu }}}_{iW}\), fo \(j=1, \ldots , q+s\).

1.2 Scale matrix perturbation

In general we obtain

$$\begin{aligned} {\varvec{\Delta }}_{\gamma }= & {} \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \gamma \partial \omega _i} \Bigg |_{\theta =\widehat{\theta },\ \omega =\omega _0}\\= & {} \sqrt{f_{g_i}} \left\{ W'_g(\hat{\delta }_i)\hat{\delta }_i+W_g(\hat{\delta }_i)\right\} \left\{ 2\left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) ^\top -\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \gamma }\right\} \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i,\\ {\varvec{\Delta }}_{\beta }= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial {\varvec{\beta }}\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-2\sqrt{f_{g_i}} \left\{ W'_g(\hat{\delta }_i)\hat{\delta }_i+W_g(\hat{\delta }_i)\right\} \left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i,\\ {\varvec{\Delta }}_{\mu }= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \mu \partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-2\sqrt{f_{g_i}} \left\{ W'_g(\hat{\delta }_i)\hat{\delta }_i+W_g(\hat{\delta }_i)\right\} \left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i,\\ {\varvec{\Delta }}_{\sigma ^2_u}= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \sigma ^2_u\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-\sqrt{f_{g_i}} \left\{ W'_g(\hat{\delta }_i)\hat{\delta }_i+W_g(\hat{\delta }_i)\right\} \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i;\\ {\varvec{\Delta }}_{\sigma ^2}= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \sigma ^2\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-\sqrt{f_{g_i}} \left\{ W'_g(\hat{\delta }_i)\hat{\delta }_i+W_g(\hat{\delta }_i) \right\} \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i \end{aligned}$$

and

$$\begin{aligned} \left. {\varvec{\Delta }}_{\tau _j} = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \tau _j\partial \omega _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}=-\sqrt{f_{g_i}} \left\{ W'_g(\hat{\delta }_i)\hat{\delta }_i+W_g(\hat{\delta }_i) \right\} \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \tau _j}\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i, \end{aligned}$$

where \(\hat{\delta }_i=\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}^{-1}_i\hat{{\varvec{r}}}_i\) and \(\hat{{\varvec{r}}}_i={\varvec{W}}_i-\hat{{\varvec{\mu }}}_{iW}\), for \(j=1, \ldots , q+s\).

1.3 Observed response perturbation

In general we obtain

$$\begin{aligned} {\varvec{\Delta }}_{\gamma }= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \gamma \partial {\varvec{\omega }}^\top _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}\\= & {} -\frac{2}{\sqrt{2d_{g_i}/m_i}}\left[ W_g(\hat{\delta }_i)\left\{ \left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) ^\top \hat{{\varvec{V}}}_i^{-\frac{1}{2}}+ \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\left( \frac{\partial {\varvec{V}}^{\frac{1}{2}}_i}{\partial \gamma } - \frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\right) \hat{{\varvec{V}}}_i^{\frac{1}{2}}\right\} \right. \\&\left. +W'_g(\hat{\delta }_i)\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1} \times \left\{ \left( \begin{array}{c} \hat{\mu }\mathbf{1}_{m_i} \\ \mathbf{0} \\ \end{array}\right) - \frac{\partial {\varvec{V}}_i}{\partial \gamma }\hat{{\varvec{V}}}_i^{-1}\hat{{\varvec{r}}}_i\right\} \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-\frac{1}{2}}\right] ,\\ {\varvec{\Delta }}_{\beta }= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial {\varvec{\beta }}\partial {\varvec{\omega }}^\top _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}\\= & {} -\frac{2}{\sqrt{2d_{g_i}/m_i}}\left( \begin{array}{c} {\varvec{X}}_i \\ \mathbf{0} \\ \end{array}\right) ^\top \left\{ W_g(\hat{\delta }_i){\varvec{I}}_{2m_i}+2W'_g(\hat{\delta }_i) \hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \right\} \hat{{\varvec{V}}}_i^{\frac{1}{2}}\hat{{\varvec{V}}}_i^{-1},\\ {\varvec{\Delta }}_{\mu }= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \mu \partial {\varvec{\omega }}^\top _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}\\= & {} -\frac{2}{\sqrt{2d_{g_i}/m_i}}\left( \begin{array}{c} \hat{\gamma }\mathbf{1}_{m_i} \\ \mathbf{1}_{m_i} \\ \end{array}\right) ^\top \left\{ W_g(\hat{\delta }_i){\varvec{I}}_{2m_i}+2W'_g(\hat{\delta }_i) \hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \right\} \hat{{\varvec{V}}}_i^{\frac{1}{2}}\hat{{\varvec{V}}}_i^{-1},\\ {\varvec{\Delta }}_{\sigma ^2_u}= & {} \left. \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \sigma ^2_u\partial {\varvec{\omega }}^\top _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}\\= & {} \frac{2}{\sqrt{2d_{g_i}/m_i}}\left\{ W_g(\hat{\delta }_i)\left( \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1} \frac{\partial {\varvec{V}}_i^{\frac{1}{2}}}{\partial \sigma ^2_u} - \hat{{\varvec{r}}}^\top _i\hat{{\varvec{V}}}_i^{-1} \frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-\frac{1}{2}}\right) \right. \\&\left. -W'_g(\hat{\delta }_i)\hat{{\varvec{r}}}^\top _i\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2_u}\hat{{\varvec{V}}}_i^{-1} \hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-\frac{1}{2}}\right\} , \end{aligned}$$
$$\begin{aligned}&\left. {\varvec{\Delta }}_{\sigma 2} - \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \sigma ^2\partial {\varvec{\omega }}^\top _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}\\&\quad =\frac{2}{\sqrt{2d_{g_i}/m_i}} \left\{ W_g(\hat{\delta }_i)\left( \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i^{1/2}}{\partial \sigma ^2} - \hat{{\varvec{r}}}^\top _i\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-\frac{1}{2}}\right) \right. \\&\qquad \left. -W'_g(\hat{\delta }_i) \hat{{\varvec{r}}}^\top _i\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \sigma ^2}\hat{{\varvec{V}}}_i^{-1} \hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-\frac{1}{2}}\right\} \end{aligned}$$

and

$$\begin{aligned}&\left. {\varvec{\Delta }}_{\tau _j} = \frac{\partial ^2 L_i({\varvec{\theta }}|{\varvec{\omega }})}{\partial \tau _j\partial {\varvec{\omega }}^\top _i} \right| _{\theta =\widehat{\theta },\ \omega =\omega _0}\\&\quad =\frac{2}{\sqrt{2d_{g_i}/m_i}} \left\{ W_g(\hat{\delta }_i)\left( \hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i^{\frac{1}{2}}}{\partial \tau _j} - \hat{{\varvec{r}}}^\top _i\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \tau _j} \hat{{\varvec{V}}}_i^{-\frac{1}{2}}\right) \right. \\&\qquad \left. -W'_g(\hat{\delta }_i) \hat{{\varvec{r}}}^\top _i\hat{{\varvec{V}}}_i^{-1}\frac{\partial {\varvec{V}}_i}{\partial \tau _j} \hat{{\varvec{V}}}_i^{-1} \hat{{\varvec{r}}}_i\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}_i^{-\frac{1}{2}}\right\} , \end{aligned}$$

where \(\hat{\delta }_i=\hat{{\varvec{r}}}_i^\top \hat{{\varvec{V}}}^{-1}_i\hat{{\varvec{r}}}_i\) and \(\hat{{\varvec{r}}}_i={\varvec{W}}_i-\hat{{\varvec{\mu }}}_{iW}\), for \(j=1, \ldots , q+s\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borssoi, J.A., Paula, G.A. & Galea, M. Elliptical linear mixed models with a covariate subject to measurement error. Stat Papers 61, 31–69 (2020). https://doi.org/10.1007/s00362-017-0921-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0921-9

Keywords

Navigation