Skip to main content
Log in

Mixed Poisson INAR(1) processes

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Overdispersion is a phenomenon commonly observed in count time series. Since Poisson distribution is equidispersed, the INteger-valued AutoRegressive (INAR) process with Poisson marginals is not adequate for modelling overdispersed counts. To overcome this problem, in this paper we propose a general class of first-order INAR processes for modelling overdispersed count time series. The proposed INAR(1) processes have marginals belonging to a class of mixed Poisson distributions, which are overdispersed. With this, our class of overdispersed count models have the known negative binomial INAR(1) process as particular case and open the possibility of introducing new INAR(1) processes, such as the Poisson-inverse Gaussian INAR(1) model, which is discussed here with some details. We establish a condition to our class of overdispersed INAR processes is well-defined and study some statistical properties. We propose estimators for the parameters and establish their consistency and asymptotic normality. A small Monte Carlo simulation to evaluate the finite-sample performance of the proposed estimators is presented and one application to a real data set illustrates the usefulness of our proposed overdispersed count processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham B, Balakrishna N (2002) Inverse gaussian autoregressive models. J Time Ser Anal 20:605–618

    MathSciNet  MATH  Google Scholar 

  • Alamatsaz MH (1983) Completeness and self-decomposability of mixtures. Ann Inst Stat Math 35:355–363

    MathSciNet  MATH  Google Scholar 

  • Aly EEAA, Bouzar N (1994) Explicit stationary distributions for some galton-watson processes with immigration. Stoch Models 10:499–517

    MathSciNet  MATH  Google Scholar 

  • Al-Osh MA, Alzaid AA (1987) First-order integer valued autoregressive (INAR(1)) process. J Time Ser Anal 8:261–275

    MathSciNet  MATH  Google Scholar 

  • Anderson TW (1971) The statistical analysis of time series. Wiley, New York

    MATH  Google Scholar 

  • Andersson J, Karlis D (2014) A parametric time series model with covariates for integers in \(\mathbb{Z}\). Stat Model 14:135–156

    MathSciNet  Google Scholar 

  • Barreto-Souza W (2015) Zero-modified geometric INAR(1) process for modelling count time series with deflation or inflation of zeros. J Time Ser Anal 36:839–852

    MathSciNet  MATH  Google Scholar 

  • Barreto-Souza W, Bourguignon M (2015) A skew INAR(1) process on \(\mathbb{Z}\). Adv Stat Anal 99:189–208

    MathSciNet  MATH  Google Scholar 

  • Bisaglia L, Canale A (2016) Bayesian nonparametric forecasting for INAR models. Comput Stat Data Anal 100:70–78

    MathSciNet  MATH  Google Scholar 

  • Forst G (1979) A characterization of self-decomposable probabilities in the half-line. Zeit Wahrscheinlichkeitsth 49:349–352

    MathSciNet  MATH  Google Scholar 

  • Freeland RK, McCabe BPM (2004a) Analysis of low count time series data by Poisson autoregression. J Time Ser Anal 25:701–722

    MathSciNet  MATH  Google Scholar 

  • Freeland RK, McCabe BPM (2004b) Forecasting discrete valued low count time series. Int J Forecast 20:427–434

    Google Scholar 

  • Freeland RK, McCabe BPM (2005) Asymptotic properties of CLS estimators in the Poisson AR(1) model. Stat Prob Lett 73:147–153

    MathSciNet  MATH  Google Scholar 

  • Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Harvey AC, Fernandes C (1989) Time series models for count or qualitative observations. J Bus Econ Stat 7:407–417

    Google Scholar 

  • Jazi MA, Jones G, Lai CD (2012) First-order integer valued processes with zero inflated poisson innovations. J Time Ser Anal 33:954–963

    MathSciNet  MATH  Google Scholar 

  • Jung RC, Tremayne AR (2011) Useful models for time series of counts or simply wrong ones? Adv Stat Anal 95:59–91

    MathSciNet  MATH  Google Scholar 

  • Karlis D, Xekalaki E (2005) Mixed Poisson distributions. Int Stat Rev 73:35–58

    MATH  Google Scholar 

  • Karlsen H, Tjostheim D (1988) Consistent estimates for the NEAR(2) and NLAR(2) time series models. J R Stat Soc Ser B 50:313–320

    MathSciNet  Google Scholar 

  • McKenzie E (1985) Some simple models for discrete variate time series. Water Resour Bull 21:645–650

    Google Scholar 

  • McKenzie E (1986) Autoregressive moving-average processes with negative binomial and geometric marginal distributions. Adv Appl Probab 18:679–705

    MathSciNet  MATH  Google Scholar 

  • McKenzie E (1988) Some ARMA models for dependent sequences of Poisson counts. Adv Appl Probab 20:822–835

    MathSciNet  MATH  Google Scholar 

  • McKenzie E (2003) Discrete variate time series. In: Rao CR, Shanbhag DN (eds) Handbook of statistics. Elsevier, Amsterdam, pp 573–606

    Google Scholar 

  • Meintanis SG, Karlis D (2014) Validation tests for the innovation distribution in INAR time series models. Comput Stat 29:1221–1241

    MathSciNet  MATH  Google Scholar 

  • Nastić AS, Ristić MM (2012) Some geometric mixed integer-valued autoregressive (INAR) models. Stat Probab Lett 82:805–811

    MathSciNet  MATH  Google Scholar 

  • Nastić AS, Ristić MM, Djordjević MS (2016a) An INAR model with discrete Laplace marginal distributions. Braz J Probab Stat 30:107–126

    MathSciNet  MATH  Google Scholar 

  • Nastić AS, Laketa PN, Ristić MM (2016b) Random environment integer-valued autoregressive process. J Time Ser Anal 37:267–287

    MathSciNet  MATH  Google Scholar 

  • Nastić AS, Ristić MM, Janjić AD (2016c) A mixed thinning based geometric INAR(1) model. Filomat

  • Pillai RN, Satheesh S (1992) \(\alpha \)-inverse Gaussian distributions. Sankhya A 54:288–290

    MathSciNet  MATH  Google Scholar 

  • Ridout MS (2009) Generating random numbers from a distribution specified by its Laplace transform. Stat Comput 19:439–450

    MathSciNet  Google Scholar 

  • Ristić MM, Nastić AS, Ilić AVM (2013) A geometric time series model with dependent Bernoulli counting series. J Time Ser Anal 34:466–476

    MathSciNet  MATH  Google Scholar 

  • Ristić MM, Bakouch HS, Nastić AS (2009) A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J Stat Plan Inference 139:2218–2226

    MathSciNet  MATH  Google Scholar 

  • Ristić MM, Nastić AS, Bakouch HS (2012) Estimation in an integer-valued autoregressive process with negative binomial marginals (NBINAR(1)). Commun Stat 41:606–618

    MathSciNet  MATH  Google Scholar 

  • Schweer S, Weiß CH (2014) Compound Poisson INAR(1) processes: stochastic properties and testing for overdispersion. Comput Stat Data Anal 77:267–284

    MathSciNet  MATH  Google Scholar 

  • Scotto MG, Weiß CH, Gouveia S (2015) Thinning-based models in the analysis of integer-valued time series: a review. Stat Model 15:590–618

    MathSciNet  Google Scholar 

  • Steutel FW, van Harn K (1979) Discrete analogues of self-decomposability and stability. Ann Probab 7:893–899

    MathSciNet  MATH  Google Scholar 

  • Weiß CH (2008a) Thinning operations for modeling time series of counts-a survey. Adv Stat Anal 92:319–341

    MathSciNet  Google Scholar 

  • Weiß CH (2008b) Serial dependence and regression of Poisson INARMA models. J Stat Plan Inference 138:2975–2990

    MathSciNet  MATH  Google Scholar 

  • Weiß CH (2009) Controlling jumps in correlated processes of Poisson counts. Appl Stoch Models Bus Ind 25:551–564

    MathSciNet  MATH  Google Scholar 

  • Weiß CH (2013) Integer-valued autoregressive models for counts showing underdispersion. J Appl Stat 40:1931–1948

    MathSciNet  Google Scholar 

  • Weiß CH (2015) A Poisson INAR(1) model with serially dependent innovations. Metrika 78:829–851

    MathSciNet  MATH  Google Scholar 

  • Weiß CH, Homburg A, Puig P (2016) Testing for zero inflation and overdispersion in INAR(1) models. Stat Pap

  • Weiß CH, Kim HY (2013) Binomial AR(1) processes: moments, cumulants, and estimation. Statistics 47:494–510

    MathSciNet  MATH  Google Scholar 

  • Yang K, Wang D, Jia B, Li H (2016) An integer-valued threshold autoregressive process based on negative binomial thinning. Stat Pap

Download references

Acknowledgements

I thank the two anonymous referees and the Associated Editor for their useful suggestions and comments that led to an improved version of this article. I also thank the financial support from CNPq (Brazil) and FAPEMIG (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Barreto-Souza.

Appendix

Appendix

We here derive the asymptotic covariance matrix of the weak convergence given in Proposition 4. For this, we will use joint moments, which are defined by

$$\begin{aligned} \mu (s_1,\ldots ,s_r)\equiv E(X_tX_{t+s_1}\ldots X_{t+s_r}), \end{aligned}$$

where \(0\le s_1\le \ldots \le s_r\) and r belongs to \(\mathbb N\). Expressions of joint moments up to fourth order for INAR(1) processes were obtained by Schweer and Weiß (2014) (Theorem 3.3.1). We will use these expressions for computing the desired asymptotic covariance matrix.

Let \(Y_n\), \(Z_n\) and \(W_n\) be as defined in Sect. 4 and define \(g_n(i,j)=n{-}i{-}\frac{\alpha ^j}{1-\alpha ^j}\big (1-\alpha ^{j(n-i)}\big )\), for \(i,j\in \mathbb N\). Using joint moments and their expressions given in Theorem 3.3.1 from Schweer and Weiß (2014), after some manipulations we obtain that

$$\begin{aligned} \text{ Var }(Y_n)= & {} n\text{ Var }(X_t)+2\sum _{t=1}^n\sum _{k=t+1}^n\text{ cov }(X_k,X_t)= n\kappa _2{+}2\sum _{t=1}^n\sum _{k=t+1}^n\big \{\mu (k-t){-}\mu ^2\big \}\\= & {} n\kappa _2\left\{ 1+2\dfrac{\alpha }{1-\alpha }-2\alpha ^2\dfrac{1-\alpha ^n}{n(1-\alpha )^2}\right\} , \end{aligned}$$
$$\begin{aligned} \text{ Var }(Z_n)= & {} n\text{ Var }(X_t^2)+2\sum _{t=1}^n\sum _{k=t+1}^n\text{ cov }\left( X_k^2,X_t^2\right) \\= & {} n(\mu _4-\mu _2^2)+2\sum _{t=1}^n\sum _{k=t+1}^n\left\{ \mu (0,k-t,k-t)-\left( \kappa _2+\mu ^2\right) ^2\right\} \\= & {} n\left( \mu _4-\mu _2^2\right) +2\dfrac{\alpha ^2}{1-\alpha ^2}g_n(1,2)\left\{ \kappa _4+\kappa _3(2\mu -1)-\kappa _2^2-2\mu \kappa _2\right\} \\&+\,2\dfrac{\alpha }{1-\alpha }g_n(1,1)(1+2\mu )(\kappa _3+2\mu \kappa _2), \end{aligned}$$
$$\begin{aligned} \text{ Var }(W_n)= & {} n\text{ Var }(X_{t-1}X_t)+2\sum _{t=1}^{n-2}\sum _{k=t+2}^n\text{ cov }(X_{k-1}X_k,X_{t-1}X_t)\\&+\,2\sum _{t=1}^{n-1}\text{ cov }(X_{t-1}X_t,X_tX_{t+1})\\= & {} \,n\left\{ \mu (0,1,1)-\mu (1)^2\right\} +2\sum _{t=1}^{n-2}\sum _{k=t+2}^n\left\{ \mu (1,k-t,k-t+1)-\mu (1)^2\right\} \\&+\,2\sum _{t=1}^{n-1}\left\{ \mu (1,1,2)-\mu (1)^2\right\} \\= & {} 2g_n(2,2)\dfrac{\alpha ^3}{1-\alpha ^2}\left\{ \alpha ^3(\kappa _4-3\kappa _3+\kappa _2(2-3\kappa _2))\right. \\&\left. +\,\,\alpha ^2(\kappa _3-\kappa _2)(2+\mu )+2\alpha \kappa _2^2+\mu (\kappa _3-\kappa _2)\right\} \\&+ 2g_n(2,1)\dfrac{\alpha }{1-\alpha }\left\{ \alpha ^3(\kappa _3-\kappa _2)(1+\mu )+\alpha ^2\mu (\kappa _3-\kappa _2)\right. \\&\left. +\,\,\alpha ^2\kappa _2(1+\mu )^2+2\alpha \mu \kappa _2(1+\mu )+\mu ^2\kappa _2\right\} \\&+ \,\alpha ^2\{\kappa _4-3\kappa _3+\kappa _2(2-3\kappa _2)\}(n+2\alpha ^2(n-1))\\&+\,\alpha (\kappa _3-\kappa _2)\{n(\alpha +(1+\alpha )(1+2\mu ))\\&+ \,2(n-1)(\mu (1+\alpha )+\alpha ^2(3+2\mu ))\}+\alpha \kappa _2\{n(1+\mu )(1+3\mu )\\&+\,2(n-1)(1+\mu )(2\mu +\alpha (1+\mu ))\}\\&+\, \mu ^2\kappa _2(n(4+\alpha )-2)+\alpha ^2\kappa _2^2(5n-2)+n\kappa _2(\kappa _2-2\alpha \mu ^2), \end{aligned}$$
$$\begin{aligned} \text{ cov }(Y_n,Z_n)= & {} nE(X_t^3)+\sum _{t=1}^{n-1}\sum _{k=t+1}^nE(X_tX_k^2)\\&+\,\sum _{k=1}^{n-1}\sum _{t=k+1}^nE(X_tX_k^2)-n^2E(X_t)E(X_t^2)\\= & {} n\mu _3+\sum _{t=1}^{n-1}\sum _{k=t+1}^n\mu (k-t,k-t)+\sum _{k=1}^{n-1}\sum _{t=k+1}^n\mu (0,t-k)-n^2\mu \mu _2\\= & {} n(\kappa _3+2\kappa _2\mu )+(\kappa _3-\kappa _2)\dfrac{\alpha ^2}{1-\alpha ^2}g_n(1,2)\\&+\dfrac{\alpha }{1-\alpha }g_n(1,1)(\kappa _2+4\mu \kappa _2+\kappa _3), \end{aligned}$$
$$\begin{aligned} \text{ cov }(Y_n,W_n)= & {} nE(X_{t-1}X_t^2)+(n-1)E(X^2_{t-1}X_t)+\sum _{t=1}^{n-2}\sum _{k=t+2}^nE(X_tX_{k-1}X_k)\\&+\,\sum _{k=1}^{n-1}\sum _{t=k+1}^nE(X_tX_{k-1}X_k)-n^2E(X_t)E(X_{t-1}X_t)\\= & {} n\mu (1,1)+(n-1)\mu (0,1)+\sum _{t=1}^{n-2}\sum _{k=t+2}^n\mu (k-t-1,k-t)\\&+\,\sum _{k=1}^{n-1}\sum _{t=k+1}^n\mu (1,t-k+1)-n^2\mu \mu (1)\\= & {} \,\alpha (n\alpha +n-1)(\kappa _3-\kappa _2)+(2n-1)\kappa _2(\alpha +\mu (1+\alpha ))\\&+\,(\kappa _3-\kappa _2)\dfrac{\alpha ^3}{1-\alpha ^2}g_n(2,2)\\&+\,\kappa _2\dfrac{\alpha }{1-\alpha }g_n(2,1)(\mu +\alpha (1+\mu ))\\&+\,\dfrac{\alpha }{1-\alpha }g_n(1,1)\{\alpha ^2(\kappa _3-\kappa _2) +\,\alpha \kappa _2(1+\mu )+\mu \kappa _2\}, \end{aligned}$$

and

$$\begin{aligned} \text{ cov }(Z_n,W_n)= & {} nE(X_{t-1}X_t^3)+(n-1)E(X^3_{t-1}X_t)+\sum _{t=1}^{n-2}\sum _{k=t+2}^nE(X_t^2X_{k-1}X_k)\\&+\,\sum _{k=1}^{n-1}\sum _{t=k+1}^nE(X_{k-1}X_kX_t^2)-n^2E(X_t^2)E(X_{t-1}X_t)\\= & {} n\mu (1,1,1)+(n-1)\mu (0,0,1)+\sum _{t=1}^{n-2}\sum _{k=t+2}^n\mu (0,k-t-1,k-t)\\&+\,\sum _{k=1}^{n-1}\sum _{t=k+1}^n\mu (1,t-k+1,t-k+1)-n^2\mu _2\mu (1)\\= & {} \alpha (n\alpha ^2+n-1)\{\kappa _4-3\kappa _3+\kappa _2(2-3\kappa _2)\}\\&+\,\alpha (n\alpha +n-1)(\kappa _3-\kappa _2)(3+2\mu )\\&+\,\mu \{n(\alpha (1+\alpha )+2)-(1+\alpha )\}(\kappa _3-\kappa _2)\\&+\,(2n-1)\kappa _2\{\mu ^2+2\alpha \kappa _2+(1+\mu )(\alpha +\mu (1+2\alpha ))\}\\&+\,\dfrac{\alpha ^3}{1-\alpha ^2}g_n(2,2)\{\kappa _4-3\kappa _3+\kappa _2(2-3\kappa _2)\\&+\,2(\kappa _3-\kappa _2)(1+\mu )+2\kappa _2^2\}\\&+\,\dfrac{\alpha }{1-\alpha }g_n(2,1)\{(\kappa _3-\kappa _2)(\mu +\alpha (1+\mu ))\\&+\,\alpha \kappa _2(1+\mu )^2+\kappa _2\mu (1+\mu )(1+\alpha )+\mu ^2\kappa _2\}\\&+\,\dfrac{\alpha ^2}{1-\alpha ^2}g_n(1,2)\{\alpha ^3(\kappa _4-3\kappa _3+\kappa _2(2-3\kappa _2))\\&+\,\alpha ^2(\kappa _3-\kappa _2)(2+\mu )+2\alpha \kappa _2^2+\mu (\kappa _3-\kappa _2)\}\\&+\,\dfrac{\alpha }{1-\alpha }g_n(1,1)\{\alpha ^2(\kappa _3-\kappa _2)(1+2\mu )+\alpha \kappa _2(1+\mu )^2\\&+\,\mu \kappa _2(\mu +(1+\mu )(1+\alpha ))\}, \end{aligned}$$

where \(\mu =E(X_n)\), \(\kappa _j=E((X_n-\mu )^j)\) and \(\mu _j=E(X_n^j)\), for \(j=2,3,4\).

Let \(\Sigma _n\) be the covariance matrix with the above terms. Hence, it follows that the covariance matrix \(\Sigma \) of the Proposition 4 can be obtained by \(\Sigma =\displaystyle \lim _{n\rightarrow \infty }\Sigma _n/n\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto-Souza, W. Mixed Poisson INAR(1) processes. Stat Papers 60, 2119–2139 (2019). https://doi.org/10.1007/s00362-017-0912-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0912-x

Keywords

Navigation