Skip to main content
Log in

On divergence tests for composite hypotheses under composite likelihood

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

It is well-known that in some situations it is not easy to compute the likelihood function as the datasets might be large or the model is too complex. In that contexts composite likelihood, derived by multiplying the likelihoods of subjects of the variables, may be useful. The extension of the classical likelihood ratio test statistics to the framework of composite likelihoods is used as a procedure to solve the problem of testing in the context of composite likelihood. In this paper we introduce and study a new family of test statistics for composite likelihood: Composite \(\phi \) -divergence test statistics for solving the problem of testing a simple null hypothesis or a composite null hypothesis. To do that we introduce and study the asymptotic distribution of the restricted maximum composite likelihood estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S, Silvey S (1966) A general class of coefficients of divergence of one distribution from another. J R Stat Soc Ser B 28:131–142

    MathSciNet  MATH  Google Scholar 

  • Basu A, Shioya H, Park C (2011) Statistical inference. The minimum distance approach. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Basu A, Mandal A, Martin N, Pardo L (2015) Density power divergence tests for composite null hypotheses. arXiv: 1403.0330v3

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B 36:192–236

    MathSciNet  MATH  Google Scholar 

  • Cattelan M, Sartiri N (2016) Empirical and simulated adjustments of composite likelihood ratio statistics. J Stat Comput Simul 86:1056–1067

    Article  MathSciNet  Google Scholar 

  • Cressie N, Read TRC (1984) Multinomial goodness-of-fit tests. J R Stat Soc Ser B 46:440–464

    MathSciNet  MATH  Google Scholar 

  • Cressie N, Pardo L, Pardo MC (2003) Size and power considerations for testing loglinear models using \(\phi \)-divergence test statistics. Stat Sin 13:550–557

    MathSciNet  MATH  Google Scholar 

  • Csiszár I (1963) Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten. Magyar Tud. Akad Mat Kutato Int Kozl 8:85–108

    MathSciNet  MATH  Google Scholar 

  • Csiszár I (1967) Information-type measures of difference of probability distributions and indirect observations. Stud Sci Math Hung 2:299–318

    MathSciNet  MATH  Google Scholar 

  • Dale JR (1986) Asymptotic normality of goodness-of-fit statistics for sparse product multinomials. J R Stat Soc Ser B 48:48–59

    MathSciNet  MATH  Google Scholar 

  • Dic JJ, Gunst MCM (1985) The distribution of general quadratic forms in normal variables. Stat Neerl 39:14–26

    Article  MathSciNet  Google Scholar 

  • Joe H, Reid N, Somg PX, Firth D, Varin C (2012) Composite likelihood methods. In: Report on the workshop on composite likelihood. http://www.birs.ca/events/2012/5-day-workshops/12w5046

  • Kullback S (1959) Information theory and statistics. Wiley, New York

    MATH  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  MathSciNet  Google Scholar 

  • Lemonte AJ (2016) The gradient test: another likelihood-based test. Elsevier, San Diego

    MATH  Google Scholar 

  • Liese F, Vajda I (1987) Convex statistical distances. Teubner texts in mathematics. Teubner, Leipzig

  • Liese F, Vajda I (2006) On divergences and informations in statistics and information theory. IEEE Trans Inf Theory 52:4394–4412

    Article  MathSciNet  Google Scholar 

  • Lindsay G (1988) Composite likelihood methods. Contemp Math 80:221–239

    Article  MathSciNet  Google Scholar 

  • Martin N, Pardo L (2012) Poisson-loglinear modeling with linear constraints on the expected cell frequencies. Sankhya B 74:238–267

    Article  MathSciNet  Google Scholar 

  • Martin N, Mata R, Pardo L (2014) Phi-divergence statistics for the likelihood ratio order: an approach based on log-linear models. J Multivar Anal 130:387–408

    Article  MathSciNet  Google Scholar 

  • Martin N, Mata R, Pardo L (2016) Wald type and phi-divergence based test-statistics for isotonic binomial proportions. Math Comput Simul 120:31–49

    Article  MathSciNet  Google Scholar 

  • Menéndez ML, Morales D, Pardo L, Salicrú M (1995) Asymptotic behavior and statistical applications of divergence measures in multinomial populations: a unified study. Stat Pap 36:1–29

    Article  Google Scholar 

  • Menéndez ML, Pardo JA, Pardo L, Pardo MC (1997) Asymptotic approximations for the distributions of the \((h,\phi )\)-divergence goodness-of-fit statistics: applications to Rényi’s statistic. Kybernetes 26:442–452

    Article  Google Scholar 

  • Morales D, Pardo L, Vajda I (1997) Some new statistics for testing hypotheses in parametric models. J Multivar Anal 62:137–168

    Article  MathSciNet  Google Scholar 

  • Pace L, Salvan A, Sartori N (2011) Adjusting composite likelihood ratio statistics. Stat Sin 21:129–148

    MathSciNet  MATH  Google Scholar 

  • Pardo L (2006) Statistical inference based on divergence measures. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Rao JNK, Scott AJ (1981) The analysis of categorical data from complex sample surveys: chi-squared tests for goodness-of-fit and independence in two-way tables. J Am Stat Assoc 76:221–230

    Article  MathSciNet  Google Scholar 

  • Read TRC, Cressie N (1988) Goodness-of-fit statistics for discrete multivariate data. Springer, New York

    Book  Google Scholar 

  • Reid N (2013) Aspects of likelihood inference. Bernoulli 19:1404–1418

    Article  MathSciNet  Google Scholar 

  • Reid N, Lindsay B, Liang K-Y (2011) Introduction to special issue. Stat Sin 21:1–3

    Google Scholar 

  • Rényi A (1961) On measures of entropy and information. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol I, Berkeley, pp 547–561

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2:110–114

    Article  Google Scholar 

  • Sen PK, Singer JM (1993) Large sample methods in statistics. Chapman & Hall/CRC, New York

    Book  Google Scholar 

  • Serfling RJ (1980) Aproximation theorems of mathematical statistics. Wiley, New York

    Book  Google Scholar 

  • Sharma BD, Mittal DP (1997) New non-additive measures of relative information. J Combin Inf Syst Sci 2:122–133

    MathSciNet  MATH  Google Scholar 

  • Stummer W, Vajda I (2010) On divergences of finite measures and their applicability in statistics and information theory. Statistics 44:169–187

    Article  MathSciNet  Google Scholar 

  • Terrell GR (2002) The gradient statistic. Comput Sci Stat 34:206–215

    Google Scholar 

  • Vajda I (1989) Theory of statistical inference and information. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Varin C (2008) On composite marginal likelihoods. Adv Stat Anal 92:1–28

    Article  MathSciNet  Google Scholar 

  • Varin C, Reid N, Firth D (2011) An overview of composite likelihood methods. Stat Sin 21:5–42

    MathSciNet  MATH  Google Scholar 

  • Xu X, Reid N (2011) On the robustness of maximum composite estimate. J Stat Plan Inference 141:3047–3054

    Article  MathSciNet  Google Scholar 

  • Zografos K (1998) \(f\)-dissimilarity of several distributions in testing statistical hypotheses. Ann Inst Stat Math 50:295–310

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments and suggestions. The third author wants to cordially thank Prof. Alex de Leon, from the University of Calgary, for fruitful discussions on composite likelihood methods, some years ago. This research is partially supported by Grant MTM2015-67057-P from Ministerio de Economia y Competitividad (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zografos.

Appendix: Proofs

Appendix: Proofs

1.1 Proof of Theorem 1

Under the standard regularity assumptions of asymptotic statistics (cf. Serfling 1980, p. 144 and Pardo 2006, p. 58), we have

$$\begin{aligned} \frac{\partial D_{\phi }(\varvec{\theta },\varvec{\theta } _{0})}{\partial \varvec{\theta } }=\int _{ \mathbb {R} ^{m}}\frac{\partial \mathcal {CL}(\varvec{\theta },\varvec{y} )}{\partial \varvec{\theta }}\phi ^{\prime }\left( \frac{ \mathcal {CL}(\varvec{\theta },\varvec{y})}{ \mathcal {CL}(\varvec{\theta }_{0},\varvec{y})} \right) d\varvec{y}, \end{aligned}$$

therefore

$$\begin{aligned} \left. \frac{\partial D_{\phi }(\varvec{\theta },\varvec{ \theta }_{0})}{\partial \varvec{\theta }}\right| _{\varvec{\theta }= \varvec{\theta }_{0}}=\phi ^{\prime }\left( 1\right) \int _{ \mathbb {R} ^{m}}\left. \frac{\partial \mathcal {CL}(\varvec{\theta }, \varvec{y})}{\partial \varvec{\theta }}\right| _{ \varvec{\theta }=\varvec{\theta }_{0}}d\varvec{y}=\varvec{0} _{p}. \end{aligned}$$

On the other hand,

$$\begin{aligned} \frac{\partial ^{2}D_{\phi }(\varvec{\theta },\varvec{ \theta }_{0})}{\partial \varvec{\theta }\partial \varvec{\theta }^{T} }&= \int _{ \mathbb {R} ^{m}}\frac{\partial ^{2}\mathcal {CL}(\varvec{\theta }, \varvec{y})}{\partial \varvec{\theta }\partial \varvec{ \theta }^{T}}\phi ^{\prime }\left( \frac{\mathcal {CL}(\varvec{\theta },\varvec{y})}{\mathcal {CL}(\varvec{\theta }_{0},\varvec{y})}\right) d\varvec{y} \\&\quad + \int _{ \mathbb {R} ^{m}}\frac{\partial \mathcal {CL}(\varvec{\theta },\varvec{y} )}{\partial \varvec{\theta }}\frac{\partial \mathcal {CL}( \varvec{\theta },\varvec{y})}{\partial \varvec{ \theta }^{T}}\frac{1}{\mathcal {CL}(\varvec{\theta }_{0}, \varvec{y})}\phi ^{\prime \prime }\left( \frac{\mathcal {CL}( \varvec{\theta },\varvec{y})}{\mathcal {CL}( \varvec{\theta }_{0},\varvec{y})}\right) d \varvec{y} \end{aligned}$$

and

$$\begin{aligned} \left. \frac{\partial ^{2}D_{\phi }(\varvec{\theta }, \varvec{\theta }_{0})}{\partial \varvec{\theta }\partial \varvec{ \theta }^{T}}\right| _{\varvec{\theta }=\varvec{\theta } _{0}}=\phi ^{\prime \prime }\left( 1\right) \int _{ \mathbb {R} ^{m}}\left. \frac{\partial c\ell (\varvec{\theta },\varvec{y })}{\partial \varvec{\theta }}\frac{\partial c\ell (\varvec{ \theta },\varvec{y})}{\partial \varvec{\theta }^{T} }\right| _{\varvec{\theta }=\varvec{\theta }_{0}}\mathcal {CL}( \varvec{\theta }_{0},\varvec{y})d\varvec{y} =\phi ^{\prime \prime }\left( 1\right) \varvec{J}(\varvec{ \theta }_{0}). \end{aligned}$$

Then, from

$$\begin{aligned} D_{\phi }(\widehat{\varvec{\theta }}_{c},\varvec{\theta } _{0})=\frac{\phi ^{\prime \prime }\left( 1\right) }{2}(\widehat{\varvec{ \theta }}_{c}-\varvec{\theta }_{0})^{T}\varvec{J}(\varvec{\theta }_{0}\mathbf {\mathbf {)(}}\widehat{\varvec{\theta }} _{c}-\varvec{\theta }_{0})+o(n^{-1/2}) \end{aligned}$$

the desired result is obtained. The value of k comes from

$$\begin{aligned} k=\mathrm {rank}\left( \varvec{G}_{*}^{-1}(\varvec{\theta }_{0} )\varvec{J}^{T}(\varvec{\theta }_{0}\mathbf { )}\varvec{G}_{*}^{-1}(\varvec{\theta }_{0}) \right) = \mathrm {rank}(\varvec{J}(\varvec{\theta }_{0})). \end{aligned}$$

1.2 Proof of Theorem 2

A first order Taylor expansion gives

$$\begin{aligned} D_{\phi }(\widehat{\varvec{\theta }}_{c},\varvec{\theta } _{0})=D_{\phi }(\varvec{\theta }^{*},\varvec{\theta } _{0})+\varvec{q}^{T}(\widehat{\varvec{\theta }}_{c}-\varvec{ \theta }^{*})+o(\Vert \widehat{\varvec{\theta }}_{c}- \varvec{\theta }^{*}\Vert ). \end{aligned}$$

But

$$\begin{aligned} \sqrt{n}(\widehat{\varvec{\theta }}_{c}-\varvec{\theta })\underset{ n\rightarrow \infty }{\overset{\mathcal {L}}{\longrightarrow }}\mathcal {N} \left( \varvec{0},\varvec{G}_{*}^{-1}(\varvec{\theta } )\right) \end{aligned}$$

and \(\sqrt{n}o(\left\| \widehat{\varvec{\theta }}_{c}-\varvec{ \theta }^{*}\right\| )=o_{p}(1).\) Now the result follows.

1.3 Proof of Theorem 3

Following Sen and Singer (1993, pp. 242–243), let \(\varvec{\theta }_{n}= \varvec{\theta }+n^{-1/2}\varvec{v}\), where \(\left\| \varvec{v }\right\| <K^{*}\), \(0<K^{*}<\infty \). Consider now the following Taylor expansion of the partial derivative of the composite log-density,

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\left. \frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta },\varvec{y}_{i} )\right| _{\varvec{\theta }=\varvec{\theta }_{n}}=\frac{ 1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{ \theta }}c\ell (\varvec{\theta },\varvec{y}_{i}) + \frac{1}{n}\sum \limits _{i=1}^{n}\left. \frac{\partial ^{2}}{\partial \varvec{\theta }\mathbf {\partial }\varvec{\theta }^{T}}c\ell ( \varvec{\theta },\varvec{y}_{i})\right| _{ \varvec{\theta }=\varvec{\theta }_{n}^{*}}\sqrt{n}\left( \varvec{\theta }_{n}-\varvec{\theta }\right) , \end{aligned}$$
(30)

where \(\varvec{\theta }_{n}^{*}\) belongs to the line segment joining \(\varvec{\theta }\) and \(\varvec{\theta }_{n}\). Then, observing that (cf. Theorem 2.3.6 of Sen and Singer 1993, p. 61)

$$\begin{aligned} \frac{1}{n}\sum \limits _{i=1}^{n}\frac{\partial ^{2}}{\partial \varvec{ \theta }\mathbf {\partial }\varvec{\theta }^{T}}c\ell (\varvec{\theta },\varvec{y}_{i})\overset{P}{\underset{n\rightarrow \infty }{\longrightarrow }}E_{\varvec{\theta }}\left[ \frac{\partial ^{2} }{\partial \varvec{\theta }\mathbf {\partial }\varvec{\theta }^{T}} c\ell (\varvec{\theta },\varvec{Y})\right] =E_{ \varvec{\theta }}\left[ \frac{\partial }{\partial \varvec{\theta }} \varvec{u}^{T}(\varvec{\theta },\varvec{Y}) \right] {=}-\varvec{H}(\varvec{\theta }), \end{aligned}$$

Eq. (30) leads

$$\begin{aligned} \left. \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta },\varvec{y}_{i} )\right| _{\varvec{\theta }=\varvec{\theta }_{n}}=\frac{ 1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{ \theta }}c\ell (\varvec{\theta },\varvec{y}_{i}\mathbf {)-} \varvec{H}(\varvec{\theta })\sqrt{n}\left( \varvec{\theta }_{n}- \varvec{\theta }\right) +o_{P}(1). \end{aligned}$$
(31)

Since \(\varvec{G}(\varvec{\theta })=\frac{\partial \varvec{g} ^{T}(\varvec{\theta })}{\partial \varvec{\theta }}\) is continuous in \(\varvec{\theta }\), it is true that,

$$\begin{aligned} \varvec{g}(\varvec{\theta }_{n})=\varvec{G}^{T}(\varvec{ \theta })\sqrt{n}\left( \varvec{\theta }_{n}-\varvec{\theta }\right) +o_{P}(1). \end{aligned}$$
(32)

Since, the restricted maximum composite likelihood estimator \(\widetilde{ \varvec{\theta }}_{rc}\) should satisfy the likelihood equations

$$\begin{aligned} \sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell ( \varvec{\theta },\varvec{y}_{i})+\varvec{G}( \varvec{\theta })\mathbf {\lambda }= & {} \varvec{0}_{p}, \\ \varvec{g}(\varvec{\theta })= & {} \varvec{0}_{r}, \end{aligned}$$

and in view of (31) and (32) it holds that

$$\begin{aligned}&\displaystyle \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta },\varvec{y}_{i})-\varvec{H}(\varvec{\theta })\sqrt{n}\left( \widetilde{ \varvec{\theta }}_{rc}-\varvec{\theta }\right) +\varvec{G}( \varvec{\theta })\frac{1}{\sqrt{n}}\overline{\mathbf {\lambda }} _{n}+o_{P}(1) =\varvec{0}_{p},&\\&\displaystyle \varvec{G}^{T}(\varvec{\theta })\sqrt{n}(\widetilde{\varvec{ \theta }}_{rc}-\varvec{\theta })+o_{P}(1) =\varvec{0}_{p}.&\end{aligned}$$

In matrix notation it may be re-expressed as

$$\begin{aligned} \left( \begin{array}{cc} \varvec{H}(\varvec{\theta }) &{}\quad -\varvec{G}(\varvec{\theta }) \\ -\varvec{G}^{T}(\varvec{\theta }) &{}\quad \varvec{0}_{r\times r} \end{array} \right) \left( \begin{array}{c} \sqrt{n}(\widetilde{\varvec{\theta }}_{rc}-\varvec{\theta })\\ n^{-1/2}\overline{\mathbf {\lambda }}_{n} \end{array} \right) =\left( \begin{array}{c} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta },\varvec{y}_{i} ) \\ \varvec{0}_{r} \end{array} \right) +o_{P}(1). \end{aligned}$$

Then

$$\begin{aligned} \left( \begin{array}{c} \sqrt{n}(\widetilde{\varvec{\theta }}_{rc}-\varvec{\theta })\\ n^{-1/2}\overline{\mathbf {\lambda }}_{n} \end{array} \right) =\left( \begin{array}{cc} \varvec{P}(\varvec{\theta }) &{}\quad \varvec{Q}(\varvec{\theta }) \\ \varvec{Q}^{T}(\varvec{\theta }) &{}\quad \varvec{R}(\varvec{\theta }) \end{array} \right) \left( \begin{array}{c} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta },\varvec{y}_{i} ) \\ \varvec{0}_{r} \end{array} \right) +o_{P}(1), \end{aligned}$$
(33)

where

$$\begin{aligned} \left( \begin{array}{cc} \varvec{P}(\varvec{\theta }) &{}\quad \varvec{Q}(\varvec{\theta }) \\ \varvec{Q}^{T}(\varvec{\theta }) &{} \quad \varvec{R}( \varvec{\theta }) \end{array} \right) =\left( \begin{array}{cc} \varvec{H}(\varvec{\theta }) &{}\quad -\varvec{G}(\varvec{\theta }) \\ -\varvec{G}^{T}(\varvec{\theta }) &{}\quad \varvec{0}_{r\times r} \end{array} \right) ^{-1}. \end{aligned}$$

This last equation implies (cf. Sen and Singer 1993, p. 243, Eq. (5.6.24)),

$$\begin{aligned} \varvec{P}(\varvec{\theta })= & {} \varvec{H}^{-1}(\varvec{\theta } )\left( \varvec{I}_{p}-\varvec{G}(\varvec{\theta })\left( \varvec{G}^{T}(\varvec{\theta })\varvec{H} ^{-1}(\varvec{\theta })\varvec{G}(\varvec{\theta } )\right) ^{-1}\varvec{G}^{T}(\varvec{\theta })\varvec{H} ^{-1}(\varvec{\theta })\right) , \\ \varvec{Q}(\varvec{\theta })= & {} -\varvec{H}^{-1}(\varvec{\theta })\varvec{G}(\varvec{\theta })\left( \varvec{G}^{T}( \varvec{\theta })\varvec{H}^{-1}(\varvec{\theta }) \varvec{G}(\varvec{\theta })\right) ^{-1},\\ \varvec{R}(\varvec{\theta })= & {} -\left( \varvec{G}^{T}( \varvec{\theta })\varvec{H}^{-1}(\varvec{\theta }) \varvec{G}(\varvec{\theta })\right) ^{-1}. \end{aligned}$$

Based on the central limit theorem (Theorem 3.3.1 of Sen and Singer 1993, p. 107) and the Cramér–Wald theorem (Theorem 3.2.4 of Sen and Singer 1993, p. 106) it is obtained

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta },\varvec{y}_{i} )\overset{\mathcal {L}}{\underset{n\rightarrow \infty }{ \longrightarrow }}\mathcal {N}\left( \varvec{0}_{p},\textit{Var}_{\varvec{ \theta }}[\varvec{u}(\varvec{\theta },\varvec{Y}\mathbf { )}]\right) . \end{aligned}$$

with \(\textit{Var}_{\varvec{\theta }}[\varvec{u}(\varvec{\theta }, \varvec{Y})]=\varvec{J}(\varvec{\theta } )\). Then, it follows from (33) that

$$\begin{aligned} \left( \begin{array}{c} \sqrt{n}(\widetilde{\varvec{\theta }}_{rc}-\varvec{\theta })\\ n^{-1/2}\overline{\mathbf {\lambda }}_{n} \end{array} \right) \overset{\mathcal {L}}{\underset{n\rightarrow \infty }{ \longrightarrow }}\mathcal {N}\left( \varvec{0},\varvec{\Sigma } \right) , \end{aligned}$$

with

$$\begin{aligned} \varvec{\Sigma }=\left( \begin{array}{cc} \varvec{P}(\varvec{\theta }) &{}\quad \varvec{Q}(\varvec{\theta }) \\ \varvec{Q}^{T}(\varvec{\theta }) &{}\quad \varvec{R}( \varvec{\theta }) \end{array} \right) \left( \begin{array}{cc} \varvec{J}(\varvec{\theta }) &{}\quad \varvec{0}_{p\times r} \\ \varvec{0}_{r\times p} &{}\quad \varvec{0}_{r\times r} \end{array} \right) \left( \begin{array}{cc} \varvec{P}^{T}(\varvec{\theta }) &{}\quad \varvec{Q}(\varvec{\theta }) \\ \varvec{Q}^{T}(\varvec{\theta })&{}\quad \varvec{R}^{T}( \varvec{\theta }) \end{array} \right) , \end{aligned}$$

or

$$\begin{aligned} \varvec{\Sigma }=\left( \begin{array}{cc} \varvec{P}(\varvec{\theta })\varvec{J}(\varvec{\theta }) \varvec{P}^{T}(\varvec{\theta }) &{}\quad \varvec{P}(\varvec{\theta })\varvec{J}(\varvec{\theta })\varvec{Q}(\varvec{\theta }) \\ \varvec{Q}^{T}(\varvec{\theta })\varvec{J}(\varvec{\theta }) \varvec{P}^{T}(\varvec{\theta }) &{}\quad \varvec{Q}^{T}( \varvec{\theta })\varvec{J}(\varvec{\theta })\varvec{Q}( \varvec{\theta }) \end{array} \right) . \end{aligned}$$

Therefore,

$$\begin{aligned} \sqrt{n}(\widetilde{\varvec{\theta }}_{rc}-\varvec{\theta })\overset{ \mathcal {L}}{\underset{n\rightarrow \infty }{\longrightarrow }}\mathcal {N} \left( \varvec{0}_{p},\varvec{P}(\varvec{\theta })\varvec{J}( \varvec{\theta })\varvec{P}^{T}(\varvec{\theta })\right) , \end{aligned}$$

with

$$\begin{aligned} \varvec{P}(\varvec{\theta })&=\varvec{H}^{-1}(\varvec{ \theta })\left( \varvec{I}_{p}-\varvec{G}(\varvec{\theta } )\left( \varvec{G}^{T}(\varvec{\theta }) \varvec{H}^{-1}(\varvec{\theta })\varvec{G}(\varvec{ \theta })\right) ^{-1}\varvec{G}^{T}(\varvec{\theta }) \varvec{H}^{-1}(\varvec{\theta })\right) \\&=\varvec{H}^{-1}(\varvec{\theta })-\varvec{H}^{-1}(\varvec{ \theta })\varvec{G}(\varvec{\theta })\left( \varvec{G}^{T} (\varvec{\theta })\varvec{H}^{-1}(\varvec{ \theta })\varvec{G}(\varvec{\theta })\right) ^{-1} \varvec{G}^{T}(\varvec{\theta })\varvec{H}^{-1}(\varvec{ \theta }) \\&=\varvec{H}^{-1}(\varvec{\theta })+\varvec{Q}(\varvec{ \theta })\varvec{G}^{T}(\varvec{\theta }) \varvec{H}^{-1}(\varvec{\theta }), \end{aligned}$$

and the proof of the lemma is now completed.

1.4 Proof of Lemma 4

Based on Eq. (33), above,

$$\begin{aligned} \sqrt{n}(\widetilde{\varvec{\theta }}_{rc}-\varvec{\theta })= \varvec{P}(\varvec{\theta })\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n} \frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta } ,\varvec{y}_{i})+o_{P}(1). \end{aligned}$$
(34)

The Taylor series expansion (30) gives that

$$\begin{aligned} \varvec{0}= & {} \left. \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta }, \varvec{y}_{i})\right| _{\varvec{\theta }=\widehat{ \varvec{\theta }}_{c}}=\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{ \partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta }, \varvec{y}_{i}) + \frac{1}{n}\sum \limits _{i=1}^{n}\left. \frac{ \partial ^{2}}{\partial \varvec{\theta }\mathbf {\partial }\varvec{ \theta }^{T}}c\ell (\varvec{\theta },\varvec{y}_{i}\mathbf {) }\right| _{\varvec{\theta }=\varvec{\theta }_{n}^{*}}\sqrt{n}(\widehat{\varvec{\theta }}_{c}-\varvec{\theta }), \end{aligned}$$

or

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta },\varvec{y}_{i} )=\mathbf {-}\frac{1}{n}\sum \limits _{i=1}^{n}\left. \frac{\partial ^{2}}{\partial \varvec{\theta }\mathbf {\partial }\varvec{\theta }^{T} }c\ell (\varvec{\theta },\varvec{y}_{i}) \right| _{\varvec{\theta }=\varvec{\theta }_{n}^{*}}\sqrt{n}( \widehat{\varvec{\theta }}_{c}-\varvec{\theta }), \end{aligned}$$

where \(\varvec{\theta }_{n}^{*}\) belongs to the line segment joining \(\varvec{\theta }\) and \(\widehat{\varvec{\theta }}_{c}\). Taking into account Theorem 2.3.6 of Sen and Singer (1993, p. 61),

$$\begin{aligned} \frac{1}{n}\sum \limits _{i=1}^{n}\left. \frac{\partial ^{2}}{\partial \varvec{\theta }\mathbf {\partial }\varvec{\theta }^{T}}c\ell ( \varvec{\theta },\varvec{y}_{i})\right| _{ \varvec{\theta }=\varvec{\theta }_{n}^{*}}\overset{P}{\underset{ n\rightarrow \infty }{\longrightarrow }}-\varvec{H}(\varvec{\theta } ), \end{aligned}$$

and the above two equations lead

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta },\varvec{y}_{i} )=\varvec{H}(\varvec{\theta })\sqrt{n}(\widehat{\varvec{ \theta }}_{c}-\varvec{\theta })+o_{P}(1). \end{aligned}$$
(35)

Equations (34), (35) and the fact that \(\varvec{P}(\varvec{\theta })=\varvec{H}^{-1}(\varvec{\theta })+ \varvec{Q}(\varvec{\theta })\varvec{G}^{T}( \varvec{\theta })\varvec{H}^{-1}(\varvec{\theta })\) give that

$$\begin{aligned} \sqrt{n}(\widetilde{\varvec{\theta }}_{rc}-\varvec{\theta })&= \varvec{P}(\varvec{\theta })\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n} \frac{\partial }{\partial \varvec{\theta }}c\ell (\varvec{\theta } ,\varvec{y}_{i})+o_{P}(1) \\&=\varvec{P}(\varvec{\theta })\varvec{H}(\varvec{\theta }) \sqrt{n}(\widehat{\varvec{\theta }}_{c}-\varvec{\theta })+o_{P}(1) \\&=\left( \varvec{H}^{-1}(\varvec{\theta })+\varvec{Q}( \varvec{\theta })\varvec{G}^{T}(\varvec{\theta })\varvec{H}^{-1}(\varvec{\theta })\right) \varvec{H}( \varvec{\theta })\sqrt{n}(\widehat{\varvec{\theta }}_{c}-\varvec{ \theta })+o_{P}(1), \end{aligned}$$

which completes the proof of the lemma.

1.5 Proof of Theorem 5

A second order Taylor expansion of \(D_{\phi }(\widehat{\varvec{\theta }} _{rc},\widetilde{\varvec{\theta }}_{rc})\), considered as a function of \( \widehat{\varvec{\theta }}_{c}\), around \(\widetilde{\varvec{\theta }} _{rc}\), gives

$$\begin{aligned} D_{\phi }(\widehat{\varvec{\theta }}_{c},\widetilde{\varvec{\theta }} _{rc})&=D_{\phi }(\widehat{\varvec{\theta }}_{rc},\widetilde{\varvec{ \theta }}_{rc})+\left. \frac{\partial }{\partial \varvec{\theta }}D_{\phi }(\varvec{\theta },\widetilde{\varvec{\theta }} _{rc})\right| _{\varvec{\theta }=\widetilde{\varvec{\theta }}_{rc}}(\widehat{\varvec{\theta }}_{c}-\widetilde{\varvec{\theta }} _{rc}) \\&\quad +\frac{1}{2}(\widehat{\varvec{\theta }}_{c}-\widetilde{\varvec{ \theta }}_{rc})^{T}\left. \frac{\partial ^{2}}{\partial \varvec{\theta } \mathbf {\partial } \varvec{\theta }^{T}}D_{\phi }(\varvec{\theta }, \widetilde{\varvec{\theta }}_{rc})\right| _{\theta = \widetilde{\varvec{\theta }}_{rc}}\!\!\!(\widehat{\varvec{\theta }}_{c}- \widetilde{\varvec{\theta }}_{rc}){+}o(\Vert \widehat{\varvec{\theta }} _{c}-\widetilde{\varvec{\theta }}_{rc}\Vert ^{2}). \end{aligned}$$

Based on Pardo (2006, pp. 411–412), we obtain \(D_{\phi }(\widetilde{\varvec{\theta }}_{rc},\widetilde{\varvec{\theta }}_{rc})=0\), \(\left. \frac{\partial }{\partial \varvec{\theta }}D_{\phi }( \varvec{\theta },\widetilde{\varvec{\theta }} _{rc})\right| _{\varvec{\theta }=\widetilde{\varvec{\theta }} _{rc}}=\varvec{0}_{p}\) and \(\left. \frac{\partial ^{2}}{\partial \varvec{\theta }\mathbf {\partial }\varvec{\theta }^{T}}D_{\phi }( \varvec{\theta },\widetilde{\varvec{\theta }} _{rc})\right| _{\varvec{\theta }=\widetilde{\varvec{\theta }} _{rc}}=\phi ^{\prime \prime }(1)\varvec{J}(\widetilde{\varvec{\theta }}_{rc})\). Then, the above equation leads

$$\begin{aligned} \frac{2n}{\phi ^{\prime \prime }(1)}D_{\phi }(\widehat{\varvec{\theta }} _{c},\widetilde{\varvec{\theta }}_{rc})=\sqrt{n}(\widehat{\varvec{ \theta }}_{c}-\widetilde{\varvec{\theta }}_{rc})^{T}\varvec{J}( \widetilde{\varvec{\theta }}_{rc})\sqrt{n}(\widehat{\varvec{\theta }} _{c}-\widetilde{\varvec{\theta }}_{rc})+no(\Vert \widehat{\varvec{ \theta }}_{c}-\widetilde{\varvec{\theta }}_{rc}\Vert ^{2}), \end{aligned}$$

or

$$\begin{aligned} T_{\phi ,n}(\widehat{\varvec{\theta }}_{c},\widetilde{ \varvec{\theta }}_{rc})=\sqrt{n}(\widehat{\varvec{\theta }}_{c}- \widetilde{\varvec{\theta }}_{rc})^{T}\varvec{J}(\widetilde{ \varvec{\theta }}_{rc})\sqrt{n}(\widehat{\varvec{\theta }}_{c}- \widetilde{\varvec{\theta }}_{rc})+no(\Vert \widehat{\varvec{\theta } }_{c}-\widetilde{\varvec{\theta }}_{rc}\Vert ^{2}). \end{aligned}$$
(36)

On the other hand (cf., Pardo 2006, p. 63),

$$\begin{aligned} no(||\widehat{\varvec{\theta }}_{c}-\widetilde{\varvec{\theta }} _{rc}||^{2})\le no(\Vert \widehat{\varvec{\theta }}_{c}-\varvec{ \theta }\Vert ^{2})+no(||\widetilde{\varvec{\theta }}_{rc}-\varvec{ \theta }||^{2}), \end{aligned}$$

and \(no(\Vert \widehat{\varvec{\theta }}_{c}-\varvec{\theta }\Vert ^{2})=o_{P}(1)\), \(no(||\widetilde{\varvec{\theta }}_{rc}-\varvec{ \theta }||^{2})=o_{P}(1)\). Therefore, \(o(||\widehat{\varvec{\theta }} _{c}-\widetilde{\varvec{\theta }}_{rc}||^{2})=o_{P}(1)\). To apply the Slutsky’s theorem, it remains to obtain the asymptotic distribution of the quantity

$$\begin{aligned} \sqrt{n}(\widehat{\varvec{\theta }}_{c}-\widetilde{\varvec{\theta }} _{rc})^{T}\varvec{J}(\widetilde{\varvec{\theta }}_{rc})\sqrt{n}( \widehat{\varvec{\theta }}_{c}-\widetilde{\varvec{\theta }}_{rc}). \end{aligned}$$

From Lemma 4 it is immediately obtained that

$$\begin{aligned} \sqrt{n}(\widehat{\varvec{\theta }}_{c}-\widetilde{\varvec{\theta }} _{rc})=\varvec{Q}(\varvec{\theta })\varvec{G}^{T} (\varvec{\theta })\sqrt{n}(\widehat{\varvec{\theta }}_{c}-\varvec{\theta })+o_{P}(1). \end{aligned}$$

On the other hand, we know that

$$\begin{aligned} \sqrt{n}(\widehat{\varvec{\theta }}_{c}-\varvec{\theta })\overset{ \mathcal {L}}{\underset{n\rightarrow \infty }{\longrightarrow }}\mathcal {N} \left( \varvec{0}_{p},\varvec{G}_{*}^{-1}(\varvec{\theta } )\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} \sqrt{n}(\widehat{\varvec{\theta }}_{c}-\widetilde{\varvec{\theta }} _{rc})\overset{\mathcal {L}}{\underset{n\rightarrow \infty }{\longrightarrow } }\mathcal {N}\left( \varvec{0}_{p},\varvec{Q}(\varvec{ \theta }\mathbf {)}\varvec{G}^{T}(\varvec{\theta } )\varvec{G}_{*}^{-1}(\varvec{\theta }) \varvec{G}(\varvec{\theta })\varvec{Q}^{T}( \varvec{\theta })\right) , \end{aligned}$$

and taking into account (36) and Corollary 2.1 of Dic and Gunst (1985), \(T_{\phi ,n}({\widehat{\varvec{\theta }}_{c}},{\widetilde{ \varvec{\theta }}_{rc}})\) converge in law to the random variable \( \sum _{i=1}^{k}\beta _{i}Z_{i}^{2}\), where \(\beta _{i}\), \(i=1,\ldots ,k\), are the eigenvalues of the matrix \(\varvec{J}(\varvec{\theta })\varvec{Q} (\varvec{\theta }\mathbf {)}\varvec{G}^{T}( \varvec{\theta })\varvec{G}_{*}^{-1}(\varvec{\theta })\varvec{G}(\varvec{\theta })\varvec{ Q}^{T}(\varvec{\theta })\) and

$$\begin{aligned} k=\mathrm {rank}\left( \varvec{Q}(\varvec{\theta }\mathbf { )}\varvec{G}^{T}(\varvec{\theta }) \varvec{G}_{*}^{-1}(\varvec{\theta })\varvec{G} (\varvec{\theta })\varvec{Q}^{T}(\varvec{ \theta })\varvec{J}(\varvec{\theta })\varvec{Q}( \varvec{\theta }\mathbf {)}\varvec{G}^{T}( \varvec{\theta })\varvec{G}_{*}^{-1}(\varvec{\theta })\varvec{G}(\varvec{\theta })\varvec{ Q}^{T}(\varvec{\theta })\right) . \end{aligned}$$

1.6 Proof of Theorem 6

The result follows in a straightforward manner by considering a first order Taylor expansion of \(D_{\phi }(\widehat{\varvec{\theta }}_{c},\widetilde{ \varvec{\theta }}_{rc})\), which yields

$$\begin{aligned} D_{\phi }(\widehat{\varvec{\theta }}_{c},\widetilde{\varvec{\theta }} _{rc})=D_{\phi }(\varvec{\theta },\varvec{\theta }^{*})+ \varvec{t}^{T}(\widehat{\varvec{\theta }}_{c}-\varvec{\theta })+ \varvec{s}^{T}(\widetilde{\varvec{\theta }}_{rc}-\varvec{\theta } ^{*})+o(\Vert \widehat{\varvec{\theta }}_{c}-\varvec{\theta }\Vert +\Vert \widetilde{\varvec{\theta }}_{rc}-\varvec{ \theta }^{*}\Vert ). \end{aligned}$$

1.7 Calculation of the integral \(I_{a}\) in (28)

The integral \(I_{a}\) is given by

$$\begin{aligned} I_{a}=\int \limits _{ \mathbb {R} ^{q}}\mathcal {CL}(\widehat{\mu },\widehat{\sigma },\widehat{\rho }, \varvec{y})^{a}\mathcal {CL}(\widehat{\mu },\sigma _{0},\rho _{0}, \varvec{y})^{1-a}d\varvec{y}, \quad a\ne 0,1, \end{aligned}$$

where

$$\begin{aligned} \mathcal {CL}(\mu ,\sigma ,\rho ,\varvec{y})= & {} L_{\rho ,\sigma }(1)\exp \left\{ -\frac{1}{2\sigma ^{2}}\left[ \sum \limits _{r=2}^{q}(y_{r-1}-\mu )^{2}+\sum \limits _{r=2}^{q}(y_{r}-\mu )^{2}\right. \right. \\&\left. \left. -2\rho \sum \limits _{r=2}^{q}(y_{r-1}-\mu )(y_{r}-\mu )\right] \right\} , \end{aligned}$$

and

$$\begin{aligned} L_{\rho ,\sigma }(s)=\frac{(1-\rho ^{2})^{s(q-1)/2}}{(2\pi )^{s(q-1)/2}\sigma ^{2(q-1)s}}. \end{aligned}$$
(37)

Then,

$$\begin{aligned} I_{a}= & {} L_{\widehat{\rho },\widehat{\sigma }}(a)L_{\rho _{0},\sigma _{0}}(1-a) \nonumber \\&\times \int \limits _{ \mathbb {R} ^{q}}\exp \left\{ -\frac{a}{2\widehat{\sigma }^{2}}\left[ \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })^{2}+\!\!\sum \limits _{r=2}^{q}(y_{r}- \widehat{\mu })^{2}-2\widehat{\rho }\sum \limits _{r=2}^{q}(y_{r-1}-\widehat{ \mu })(y_{r}-\widehat{\mu })\right] \right\} \nonumber \\&\times \exp \left\{ -\frac{(1-a)}{2\sigma _{0}^{2}}\left[ \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })^{2}+\!\!\sum \limits _{r=2}^{q}(y_{r}-\widehat{\mu })^{2}-2\rho _{0}\sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })(y_{r}-\widehat{\mu }) \right] \right\} \nonumber \\&\quad dy_{1}\ldots dy_{q}. \end{aligned}$$
(38)

But, if

$$\begin{aligned} E_{1}= & {} \exp \left\{ -\frac{a}{2\widehat{\sigma }^{2}}\left[ \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })^{2}+\sum \limits _{r=2}^{q}(y_{r}-\widehat{\mu })^{2}-2\widehat{\rho } \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })(y_{r}-\widehat{\mu })\right] \right\} , \\ E_{2}= & {} \exp \left\{ -\frac{(1-a)}{2\sigma _{0}^{2}}\left[ \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })^{2}+\sum \limits _{r=2}^{q}(y_{r}- \widehat{\mu })^{2}-2\rho _{0}\sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu } )(y_{r}-\widehat{\mu })\right] \right\} , \end{aligned}$$

then

$$\begin{aligned} E_{1}\times E_{2}= & {} \exp \left\{ -\frac{1}{2}\left( \frac{a}{\widehat{ \sigma }^{2}}-\frac{1-a}{\sigma _{0}^{2}}\right) \left[ \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })^{2}+\sum \limits _{r=2}^{q}(y_{r}- \widehat{\mu })^{2}\right] \right. \nonumber \\&\left. +\left( \frac{a\widehat{\rho }}{\widehat{\sigma } ^{2}}+\frac{(1-a)\rho _{0}}{\sigma _{0}^{2}}\right) \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })(y_{r}-\widehat{\mu })\right\} \nonumber \\= & {} \exp \left\{ -\frac{1}{2}\left( \frac{a}{\widehat{\sigma }^{2}}-\frac{1-a }{\sigma _{0}^{2}}\right) \left[ \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })^{2}+\sum \limits _{r=2}^{q}(y_{r}-\widehat{\mu })^{2}\right. \right. \nonumber \\&\left. \left. -2\frac{\frac{a\widehat{\rho }}{\widehat{ \sigma }^{2}}+\frac{(1-a)\rho _{0}}{\sigma _{0}^{2}}}{\frac{a}{\widehat{ \sigma }^{2}}-\frac{1-a}{\sigma _{0}^{2}}}\sum \limits _{r=2}^{q}(y_{r-1}- \widehat{\mu })(y_{r}-\widehat{\mu })\right] \right\} \nonumber \\= & {} \exp \left\{ -\frac{1}{2\sigma _{*}^{2}}\left[ \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })^{2}+\sum \limits _{r=2}^{q}(y_{r}- \widehat{\mu })^{2}\right. \right. \nonumber \\&\left. \left. -2\rho ^{*}\sum \limits _{r=2}^{q}(y_{r-1}-\widehat{ \mu })(y_{r}-\widehat{\mu })\right] \right\} , \end{aligned}$$
(39)

with

$$\begin{aligned} \frac{1}{\sigma _{*}^{2}}=\frac{a}{\widehat{\sigma }^{2}}-\frac{1-a}{ \sigma _{0}^{2}}=\frac{a\sigma _{0}^{2}-(1-a)\widehat{\sigma }^{2}}{\widehat{ \sigma }^{2}\sigma _{0}^{2}}, \end{aligned}$$

or

$$\begin{aligned} \sigma _{*}^{2}=\frac{\widehat{\sigma }^{2}\sigma _{0}^{2}}{a\sigma _{0}^{2}-(1-a)\widehat{\sigma }^{2}}, \end{aligned}$$
(40)

and

$$\begin{aligned} \rho ^{*}=\frac{\frac{a\widehat{\rho }}{\widehat{\sigma }^{2}}+\frac{ (1-a)\rho _{0}}{\sigma _{0}^{2}}}{\frac{a}{\widehat{\sigma }^{2}}-\frac{1-a}{ \sigma _{0}^{2}}}=\frac{\frac{a\widehat{\rho }\sigma _{0}^{2}+(1-a)\rho _{0} \widehat{\sigma }^{2}}{\widehat{\sigma }^{2}\sigma _{0}^{2}}}{\frac{a\sigma _{0}^{2}-(1-a)\widehat{\sigma }^{2}}{\widehat{\sigma }^{2}\sigma _{0}^{2}}}= \frac{a\widehat{\rho }\sigma _{0}^{2}+(1-a)\rho _{0}\widehat{\sigma }^{2}}{ a\sigma _{0}^{2}-(1-a)\widehat{\sigma }^{2}}. \end{aligned}$$
(41)

Based on (38)–(41),

$$\begin{aligned} I_{a}= & {} \frac{L_{\widehat{\rho },\widehat{\sigma }}(a)L_{\rho _{0},\sigma _{0}}(1-a)}{L_{\rho ^{*},\sigma ^{*}}(1)} \\&\times \int \limits _{ \mathbb {R} ^{q}}L_{\rho ^{*},\sigma ^{*}}(1)\exp \left\{ -\frac{1}{2\sigma _{*}^{2}}\left[ \sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu } )^{2}+\sum \limits _{r=2}^{q}(y_{r}-\widehat{\mu })^{2}\right. \right. \nonumber \\&\left. \left. -2 \rho ^{*}\sum \limits _{r=2}^{q}(y_{r-1}-\widehat{\mu })(y_{r}-\widehat{\mu })\right] \right\} d\varvec{y}, \end{aligned}$$

and taking into account that the last integral is equal to one,

$$\begin{aligned} I_{a}=\frac{L_{\widehat{\rho },\widehat{\sigma }}(a)L_{\rho _{0},\sigma _{0}}(1-a)}{L_{\rho ^{*},\sigma ^{*}}(1)}, \end{aligned}$$
(42)

with \(L_{\rho ,\sigma }(s),\) defined by (37). After some algebraic manipulations, (42) leads to the explicit expression of the integral \( I_{a}\), given by (28).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín, N., Pardo, L. & Zografos, K. On divergence tests for composite hypotheses under composite likelihood. Stat Papers 60, 1883–1919 (2019). https://doi.org/10.1007/s00362-017-0900-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0900-1

Keywords

Mathematics Subject Classification

Navigation