Skip to main content
Log in

Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The parameter \(\kappa \) is a kind of kurtosis measure, which does not reduce to the univariate kurtosis parameter when \(p=1\).

References

  • Aerts S, Haesbroeck G, Ruwet C (2015) Multivariate coefficients of variation: comparison and influence functions. J Multivar Anal 142:183–198

    Article  MathSciNet  MATH  Google Scholar 

  • Albert A, Zhang L (2010) A novel definition of the multivariate coefficient of variation. Biom J 52:667–675

    Article  MathSciNet  MATH  Google Scholar 

  • Babkoff H, Kelly TL, Naitoh P (2001) Trial-to-trial variance in choice reaction time as a measure of the effect of stimulants during sleep deprivation. Mil. Psychol 13:1–16

    Article  Google Scholar 

  • Bennett BM (1977) On multivariate coefficients of variation. Stat Papers 18(2):123–128

    MathSciNet  MATH  Google Scholar 

  • Castagliola P, Achouri A, Taleb H, Celano G, Psarakis S (2013) Monitoring the coefficient of variation using control charts with run rules. Qual Technol Quant Manag 10:75–94

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall/CRC, New York

    Book  MATH  Google Scholar 

  • Gomez E, Gomez-Villegas MA, Marin JM (1998) A multivariate generalization of the power exponential family of distributions. Commun Stat Theory Methods 27:589–600

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson NL, Welch BL (1940) Applications of the noncentral \(t\) distribution. Biometrika 31:362–389

    Article  MathSciNet  MATH  Google Scholar 

  • Jongphil K (2007) Efficient confidence interval methodologies for the noncentrality parameters of noncentral \(t\) distributions. Doctoral thesis, Georgia Institute of Technology. [available from GeorgiaTech institutional repository https://smartech.gatech.edu]

  • Kelley K (2007) Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach. Behav Res Methods 39:755–766

    Article  Google Scholar 

  • Mathai AM, Provost SB (1992) Quadratic forms in random variables: theory and applications. M. Dekker, New York

    MATH  Google Scholar 

  • MacKinnon JG, Smith AA (1998) Approximate bias correction in econometrics. J Econom 85:205–230

    Article  MathSciNet  MATH  Google Scholar 

  • Magnus JR, Neudecker H (2007) Matrix differential calculus with applications in statistics and econometrics. Wiley, New York

    MATH  Google Scholar 

  • Markowitz HM (1952) Portfolio selection. J Finance 7:77–91

    Google Scholar 

  • McKay AT (1932) Distribution of the coefficient of variation and the extended \(t\)-distribution. J R Stat Soc 95:695–698

    Article  MATH  Google Scholar 

  • Nairy KS, Rao KA (2003) Tests of coefficients of variation of normal population. Commun Stat Simul Comput 32:641–661

    Article  MathSciNet  MATH  Google Scholar 

  • Sharpe W (1966) Mutual funds performance. J Bus 39:119–138

    Article  Google Scholar 

  • Sokal RR, Braumann CA (1980) Significance tests for coefficients of variation and variability profiles. Syst Zool 29:50–66

    Article  Google Scholar 

  • Svensson GP, Hickman MO, Bartram S, Boland W, Pellmyr O, Raguso RA (2005) Chemistry and geographic variation in floral scent in Yucca Filamentosa (Agavaceae). Am J Bot 92:1624–1631

    Article  Google Scholar 

  • Tyler DE (1982) Radial estimates and the test for sphericity. Biometrika 69:429–436

    Article  MathSciNet  MATH  Google Scholar 

  • Van Valen L (1974) Multivariate structural statistics in natural history. J Theor Biol 45:235–247

    Article  Google Scholar 

  • Verrill S (2003) Confidence bounds for normal and lognormal distribution coefficients of variation. Research Paper, FPL-RP-609. U.S. Department of Agriculture

  • Voinov VG, Nikulin MS (1996) Unbiased estimators and their applications. Multivariate case, vol 2. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Zhang L (2010) Statistical methods for analyzing serum protein electrophoretic data in External Quality Assessment (EQA) Programs. Doctoral thesis, University of Liège [available from ULg institutional repository http://bictel.ulg.ac.be]

  • Zhang L, Albarède S, Dumont G, Van Campenhout C, Libeer J, Albert A (2010) The multivariate coefficient of variation for comparing serum protein electrophoresis techniques in external quality assessment schemes. Accredit Qual Assur 15:351–357

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Professor A. Albert (School of Public Health, University of Liege) for making the EQA data available. This work was partially supported by the IAP Research Network P7/06 of the Belgian State.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aerts.

Appendix

Appendix

Proof

(Proposition 1) Let \(\mathbf {X}=( \mathbf {X}_{1},\ldots , \mathbf {X}_{n})\) be a sequence of n independent p-variate random vectors and \(g_{\mathsf {A}}\) be a transformation on \(\mathbf {X}\) defined by \(g_{{\mathsf {A}}}: \mathbf {X} \mapsto ({\mathsf {A}}\mathbf {X}_{1}, \ldots , {\mathsf {A}}\mathbf {X}_{n}) \) where \({\mathsf {A}}\) is a \(p\times p \) non-singular matrix.

First, since the location and covariance estimators \(\mathbf {T}_n(\mathbf {X})\) and \({\mathsf {C}}_n(\mathbf {X})\) are affine equivariant, the estimator \(V_n(\mathbf {X})\) is invariant under \(g_{\mathsf {A}}\) as detailed below:

$$\begin{aligned} V_n(g_{\mathsf {A}}(\mathbf {X}))&= \frac{1}{\sqrt{\mathbf {T}_n(\mathbf {X})^t {\mathsf {A}}^t ({\mathsf {A}}^t)^{-1} {\mathsf {C}}_n(\mathbf {X}) {\mathsf {A}}^{-1}{\mathsf {A}}\mathbf {T}_n(\mathbf {X})}} = V_n(\mathbf {X}) \end{aligned}$$

Now, let \(F_{\varvec{\mu }, {\mathsf {\Sigma }}}\) and \(F_{\varvec{\mu }',{\mathsf {\Sigma }}'}\) be two distributions belonging to \(\mathscr {F}_h\) and having the same theoretical coefficient of variation \(\gamma = \gamma '\). As \(\sqrt{\varvec{\mu }^t {\mathsf {\Sigma }}^{-1} \varvec{\mu }}=\Vert {\mathsf {\Sigma }}^{-1/2} \varvec{\mu }\Vert \) where \(\Vert .\Vert \) is the Euclidean norm, the equality \(\gamma = \gamma '\) implies the equality of the two norms \(\Vert {\mathsf {\Sigma }}^{-1/2} \varvec{\mu }\Vert =\Vert {\mathsf {\Sigma }}'^{-1/2} \varvec{\mu }'\Vert \). Therefore, there exists an orthogonal matrix \({\mathsf {B}}\) such that \({\mathsf {\Sigma }} ^{-1/2}\varvec{\mu }= {\mathsf {B}} {\mathsf {\Sigma }}'^{-1/2}\varvec{\mu }'.\)

Take as matrix \({\mathsf {A}}\) the non-singular matrix \({\mathsf {\Sigma }}^{1/2} {\mathsf {B}} {\mathsf {\Sigma }}'^{-1/2}\). It follows directly that \(F_{\varvec{\mu },{\mathsf {\Sigma }}} = F_{{\mathsf {A}}\varvec{\mu }', {\mathsf {A}} {\mathsf {\Sigma }}'{\mathsf {A}}^{t}}\). From there, it comes

$$\begin{aligned} \text{ G }_{F_{\varvec{\mu }, {\mathsf {\Sigma }}}} \left[ V_n(\mathbf {X}) \right] = \text{ G }_{F_{{\mathsf {A}} \varvec{\mu }', {\mathsf {A}} {\mathsf {\Sigma }}'{\mathsf {A}}^t}} \left[ V_n(\mathbf {X}) \right] = \text{ G }_{F_{\varvec{\mu }', {\mathsf {\Sigma }}'}} \left[ V_n(g_{\mathsf {A}} (\mathbf {X}))\right] = \text{ G }_{F_{\varvec{\mu }',{\mathsf {\Sigma }}'}} \left[ V_n(\mathbf {X}) \right] \end{aligned}$$

where \(\text{ G }_{F}\left[ . \right] \) corresponds to the distribution of [.] computed under the assumption that \(\mathbf {X} _{i} \sim F\) for \(i= 1,\ldots ,n\). This concludes the proof. \(\square \)

Proof

(Proposition 2) For affine-equivariant estimators \(\mathbf {T}_n:=\mathbf {T}_n(\mathbf {X})\) and \({\mathsf {C}}_n:={\mathsf {C}}_n(\mathbf {X})\) satisfying (A1), (A2) and (A3), their joint asymptotic distribution is given by

$$\begin{aligned} N_{p^2+p}( (\varvec{\mu }, \text{ vec }{\mathsf {\Sigma }})^t, V)&\text { with }&V = \begin{pmatrix} \tau {\mathsf {\Sigma }} &{} 0_{p\times p^2}\\ 0_{p\times p^2}^t &{} {\mathsf {\Xi }}\\ \end{pmatrix} \end{aligned}$$

The delta method for the function f defined by \(f: \mathbb {R}^{p+p^2} \rightarrow \mathbb {R}: W=(\mathbf {T}_n, \text{ vec }{\mathsf {C}}_n ) \mapsto (\mathbf {T}_n^t {\mathsf {C}}_n^{-1}\mathbf {T}_n)^{-1/2}= V_n\) allows to say that

$$\begin{aligned} \sqrt{n}( V_n - \gamma ) \mathop {\longrightarrow }\limits ^{\mathscr {L}} N \left( 0, \nabla f(\varvec{\mu }, \text{ vec }{\mathsf {\Sigma }})^t ~V ~\nabla f (\varvec{\mu }, \text{ vec }{\mathsf {\Sigma }}) \right) \end{aligned}$$

where \(\nabla f\) denotes the vector of partial derivatives of f.

The following identities can be derived from properties of the \(\text{ vec }\) operator and the Kronecker product (see for instance Magnus and Neudecker 2007):

$$\begin{aligned} \left. \frac{\partial f}{\partial \mathbf {T}_n}\right| _{\varvec{\mu },\text{ vec }{\mathsf {\Sigma }}}&= -\gamma ^3 {\mathsf {\Sigma }}^{-1}\varvec{\mu }\\ \left. \frac{\partial f}{\partial \text{ vec }{\mathsf {C}}_n}\right| _{\varvec{\mu },\text{ vec }{\mathsf {\Sigma }}}&= \frac{\gamma ^3}{2}(\varvec{\mu }^t \otimes \varvec{\mu }^t)({\mathsf {\Sigma }}^{-1} \otimes {\mathsf {\Sigma }}^{-1}), \end{aligned}$$

which allows to obtain the following expression for the asymptotic variance of \(V_n\):

$$\begin{aligned} \gamma ^6 \tau \varvec{\mu }^t {\mathsf {\Sigma }}^{-1} \varvec{\mu }+ \frac{\gamma ^6}{4}(\varvec{\mu }^t \otimes \varvec{\mu }^t)({\mathsf {\Sigma }}^{-1} \otimes {\mathsf {\Sigma }}^{-1})^t ~{\mathsf {\Xi }}~ (\varvec{\mu }^t \otimes \varvec{\mu }^t)({\mathsf {\Sigma }}^{-1} \otimes {\mathsf {\Sigma }}^{-1}). \end{aligned}$$
(25)

Since the asymptotic distribution of \(V_n\) depends on \(\varvec{\mu }\) and \( {\mathsf {\Sigma }}\) only through \(\gamma \), it suffices to compute expression (25) for any parameters satisfying \((\varvec{\mu }^t {\mathsf {\Sigma }}^{-1} \varvec{\mu })^{-1/2} = \gamma \). Taking for instance \(\varvec{\mu }_0 = (1/\gamma ) \mathbf {e}_1\) and \({\mathsf {\Sigma }}_0 = {\mathsf {I}}_{p}\) allows to conclude. \(\square \)

Proof

(Lemma 1) The non-central F distribution function with degrees of freedom \(d_1\) and \(d_2\) and non-centrality parameter \(\delta \) evaluated in a fixed x can be expressed as a function of \(t=\delta /2\)

$$\begin{aligned} G(t)= e^{-t} \sum _{j=0}^{+\infty } \frac{t^j}{j!} C_j \end{aligned}$$
(26)

where \(C_j := I\left( \left. d_1x / (d_2+d_1x) \right| d_1/2 +j , d_2/2\right) \) with I the regularized incomplete Beta function. Since the series converges uniformly on any compact of \(]0;+\infty [\), the function G is continuous in t. The idea is to examine the sign of the derivative of G with respect to t. As a power series in t with convergence domain \([0,+\infty [\), G can be differentiated easily to obtain

$$\begin{aligned} G'(t) = e^{-t}\sum _{j=0}^{+\infty } \frac{t^j}{j!} \left( C_{j+1} -C_j\right) \end{aligned}$$

Using properties of the regularized incomplete Beta function, this derivative can be shown to be strictly negative, which concludes the proof. \(\square \)

Proof

(Proposition 3) Let \(\mathscr {A}\) be the event

$$\begin{aligned} \left\{ F^{-1}_{p,n-p,\delta }(\beta ) \le T \le F^{-1}_{p,n-p,\delta }(1- \alpha +\beta ) \right\} , \end{aligned}$$

where \(T = \frac{n-p}{p} \frac{1}{V_n^2}\) is a random variable following a non-central F distribution with degrees of freedom p and \(n-p\) and non-centrality parameter \(\delta =n/\gamma ^2\).

As a consequence of Lemma 1 and by definition of \(I(V_n)\), the following events are equivalent

$$\begin{aligned} \mathscr {A} \cap \left\{ V_n \le C_{p,n-p} \right\} = \left\{ \gamma \in I(V_n) \right\} \cap \left\{ V_n \le C_{p,n-p} \right\} . \end{aligned}$$

The proof can then be concluded thanks to the inequalities

$$\begin{aligned} 1-\alpha&= \mathbb {P}_\gamma \left[ \mathscr {A} \right] \ge \mathbb {P}_{\gamma } \left[ \mathscr {A} \cap \left\{ V_n \le C_{p,n-p} \right\} \right] \\&\ge \mathbb {P}_\gamma \left[ \mathscr {A} \right] - \epsilon = 1 - \alpha - \epsilon . \end{aligned}$$

\(\square \)

Proof

(Proposition 4) First, let us show that the function g is strictly increasing in \(\gamma \). This function simplifies as follows, provided that \(0<p<n\),

$$\begin{aligned} g(\gamma )&= \frac{\Gamma \left( \frac{n-p}{2}+\frac{1}{2} \right) }{\Gamma \left( \frac{n-p}{2}\right) }e^{-{\frac{n}{2\gamma ^2}}} \sum _{j=0}^{+\infty }\left( \frac{n}{2\gamma ^2}\right) ^j \frac{1}{j!}\frac{\Gamma \left( \frac{p}{2}+j - \frac{1}{2} \right) }{\Gamma \left( \frac{p}{2}+j\right) }. \end{aligned}$$
(27)

Since the series is uniformly convergent on any compact of \(]0;+\infty [\), this function is continuous. The idea is to examine the sign of the derivative of g with respect to \(\gamma \). As a power series in \(\gamma \) whose convergence domain is \(]0; +\infty [\), the series in (27) can be easily differentiated to obtain

$$\begin{aligned} g'(\gamma )&=\frac{\Gamma \left( \frac{n-p+1}{2}\right) }{\Gamma \left( \frac{n-p}{2}\right) } \frac{n}{\gamma ^3}e^{-{\frac{n}{2\gamma ^2}}} \sum ^{+\infty }_{j=0}\left( \frac{n}{2\gamma ^2}\right) ^j \frac{1}{j!} \frac{\Gamma \left( \frac{p-1}{2} +j\right) }{\Gamma \left( \frac{p}{2} +j \right) } \left( 1- \frac{\frac{p+1}{2}+j}{\frac{p}{2}+j}\right) , \end{aligned}$$

which is strictly positive for every \(\gamma \in ]0; +\infty [\). Moreover, noting that

$$\begin{aligned} \lim _{\gamma \rightarrow +\infty }g(\gamma )&= \frac{\Gamma \left( \frac{n-p+1}{2}\right) \Gamma \left( \frac{p-1}{2}\right) }{\Gamma \left( \frac{n-p}{2}\right) \Gamma \left( \frac{p}{2}\right) }\\ \lim _{\gamma \rightarrow 0^{+}} g(\gamma )&=0 \end{aligned}$$

concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aerts, S., Haesbroeck, G. & Ruwet, C. Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation. Stat Papers 59, 545–579 (2018). https://doi.org/10.1007/s00362-016-0777-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0777-4

Keywords

Mathematics Subject Classification

Navigation