Skip to main content
Log in

A new class of designs for mixture-of-mixture experiments

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper deals with the implementation of an additive linear model for mixture of mixtures including major and minor components. Experimental designs, derived from designs for qualitative factors, are built for the two classical cases of type A or type B mixtures. With such designs the determination of the least square estimators of the model parameters or the determination of the D-efficiency can be achieved in an easy way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cornell JA (2002) Experiments with mixtures, models and the analysis of mixture data., Wiley series in probability and mathematical statisticsWiley, New York

    Book  Google Scholar 

  • Cornell JA, Good IJ (1970) The mixture problem for categorized components. J Am Stat Soc 65(329): 339–355

    Google Scholar 

  • Cornell JA, Ramsey PJ (1998) A generalized mixture model for categorized-components problems with an application to a photoresist-coating experiment. Technometrics 40(1):48–61

    Article  MATH  Google Scholar 

  • Draper NR, Pukelsheim F (1996) An overview of designs of experiments. Stat Papers 37:1–32

    Article  MATH  MathSciNet  Google Scholar 

  • Federov VV (1972) Theory of optimal experiments. Academic Press Inc., London

    Google Scholar 

  • Hanna H, Tinsson W (2010) Plans d’expérience pour mélanges à deux niveaux. J de la Soc Fr de Stat 151(2):47–65

    MathSciNet  Google Scholar 

  • Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal arrays: theory and applications, springer series in statistics. Springer, New York

    Book  Google Scholar 

  • Kang L, Joseph VR, Brenneman W (2011) Design and modeling strategies for mixture-of-ixtures experiments. Technometrics 53:125–136

    Article  MathSciNet  Google Scholar 

  • Lambrakis IS (1968) Experiments with mixtures: a generalization of the simplex-lattice design. J Royal Stati Soc Ser B 30:123–136

    MathSciNet  Google Scholar 

  • Li KH, Lau TS, Zang C (2005) A note on D-optimal designs for models with and without an intercept. Stat Papers 46:451–458

    Article  MATH  Google Scholar 

  • Piepel GF (1999) Modeling methods for mixture-of-mixtures experiments applied to a tablet. Pharm Dev Technol 4(4):593–606

    Article  Google Scholar 

  • Pukelsheim F (1993) Optimal designs of experiments., Wiley series in probability and mathematical statistics. Wiley, New York

  • Scheffé H (1958) Experiments with mixtures. J Royal Stat Soc Ser B 20:344–360

    MATH  Google Scholar 

  • Tinsson W (2010) Plans d’expérience : constructions et analyses statistiques., Collection mathématiques et applications. Springer, New York

Download references

Acknowledgments

The authors want to thank the anonymous referees for their helful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Tinsson.

Appendix A: Proof of proposition 3

Appendix A: Proof of proposition 3

Using Proposition \(2\), the associated MoM design is balanced and its information matrix under constraints (5) is given by (see proposition \(1\)):

$$\begin{aligned} X^{*t}X^{*}=\hbox {diag}\left[ n,a_{1}\left( I_{q_{1}-1}+J_{q_{1}-1}\right) , \, \ldots \, ,a_{p}\left( I_{q_{p}-1}+J_{q_{p}-1}\right) \right] . \end{aligned}$$

It is well known that \(\left( aI_{n}+bJ_{n}\right) ^{-1}=a^{-1}\left( I_{n}-\left( b/a+nb\right) J_{n}\right) \) so:

$$\begin{aligned} \left( X^{*t}X^{*}\right) ^{-1}=\hbox {diag}\left[ \frac{1}{n},\frac{1}{a_{1}}\left( I_{q_{1}-1}-\frac{1}{q_{1}}J_{q_{1}-1}\right) , \, \ldots \, ,\frac{1}{a_{p}}\left( I_{q_{p}-1}-\frac{1}{q_{p} }J_{q_{p}-1}\right) \right] . \end{aligned}$$

Thus (\(\forall \) \(i=1,\ldots ,p\) and \(\forall \) \(j=1,\ldots ,q_{i}-1\)):

$$\begin{aligned} \hbox {Var}\left( \widehat{\beta }_{0}\right) =\frac{\sigma ^{2}}{n}\text { and }\hbox {Var}\left( \widehat{\beta }_{ij}\right) =\frac{\sigma ^{2}}{a_{i}}\left( 1-\frac{1}{q_{i}}\right) =\frac{\sigma ^{2}\left( q_{i}-1\right) }{q_{i}a_{i}} \end{aligned}$$

with \(a_{i}=n\left( 1-q_{i}\alpha _{i}\right) ^{2}/q_{i}.\) For the least squares estimators we immediately obtain \(\widehat{\beta }_{0}=1/n\left( \mathbb {I}_{n}^{t}Y\right) =\overline{Y}.\) Concerning \(b_{ij}\) the block diagonal structure of \(X^{*t}X^{*}\) implies that the parameters in \(\gamma _{i}=\left( \beta _{i1},\beta _{12},\ldots ,\beta _{i\left( q_{i}-1\right) }\right) ^{t}\), associated to the major component \(i\) (\(i=1,\ldots ,p\)), can be estimated by:

$$\begin{aligned} \begin{array}{ll} \widehat{\gamma }_{i} &{} =\dfrac{1}{a_{i}}\left( I_{q_{i}-1}-\dfrac{1}{q_{i} }J_{q_{i}-1}\right) A^{\left[ q_{i}\right] t}D_{i,\alpha _{i}}^{t}Y\\ &{} =\overset{}{\dfrac{1}{a_{i}}\left( I_{q_{i}-1}-\dfrac{1}{q_{i}}J_{q_{i} -1}\right) \left[ \left( 1-q_{i}\alpha _{i}\right) A^{\left[ q_{i}\right] t}X_{i}^{t}Y+\alpha _{i}A^{\left[ q_{i}\right] t}J_{q_{i}n}Y\right] }\\ &{} =\overset{}{\dfrac{q_{i}}{n\left( 1-q_{i}\alpha _{i}\right) }\left( I_{q_{i}-1}-\dfrac{1}{q_{i}}J_{q_{i}-1}\right) A^{\left[ q_{i}\right] t}X_{i}^{t}Y}\text { because }A^{\left[ q_{i}\right] t}\mathbb {I}_{q_{i}}=0. \end{array} \end{aligned}$$

Remember that \(X_{i}\) is a binary matrix of the qualitative factors design so (denoting by \(S_{ij}\) the sum of the responses for which minor component \(j\) of major component \(i\) is used):

$$\begin{aligned} X_{i}^{t}Y=\left( \begin{array}{c} S_{i1}\\ \vdots \\ S_{iq_{i}} \end{array} \right) \text { and }A^{\left[ q_{i}\right] t}X_{i}^{t}Y=\left( \begin{array}{c} S_{i1}-S_{iq_{i}}\\ \vdots \\ S_{i\left( q_{i}-1\right) }-S_{iq_{i}} \end{array} \right) . \end{aligned}$$

Applying the operator \(\left( I_{q_{i}-1}-\left( 1/q_{i}\right) J_{q_{i} -1}\right) \) to the vector \(A^{\left[ q_{i}\right] t}X_{i}^{t}Y\) gives (for \(j=1,\ldots ,q_{i}-1\)):

$$\begin{aligned} \begin{array}{ll} \hat{\beta }_{ij} &{} =\dfrac{q_{i}}{n\left( 1-q_{i}\alpha _{i}\right) }\left[ S_{ij}-S_{iq_{i}}-\left( \dfrac{q_{i}-1}{q_{i}}\right) \left( \dfrac{1}{q_{i}-1} {\displaystyle \sum \limits _{j=1}^{q_{i}-1}} S_{ij}-S_{iq_{i}}\right) \right] \\ &{} =\overset{}{\dfrac{q_{i}}{n\left( 1-q_{i}\alpha _{i}\right) }\left[ S_{ij}-\left( \dfrac{1}{q_{i}}S_{iq_{i}}+\dfrac{1}{q_{i}} {\displaystyle \sum \limits _{j=1}^{q_{i}-1}} S_{ij}\right) \right] }\\ &{} =\dfrac{q_{i}}{n\left( 1-q_{i}\alpha _{i}\right) }\left( S_{ij}-\dfrac{1}{q_{i}} {\displaystyle \sum \limits _{j=1}^{q_{i}}} S_{ij}\right) . \end{array} \end{aligned}$$

The design for qualitative factors is orthogonal, so \(X_{i}^{t}\mathbb {I} _{n}=\left( n/q_{i}\right) \mathbb {I}_{q_{i}}\) and \(S_{ij}\) is a sum involving \(n/q_{i}\) terms. This remark lead us to \(S_{ij}=\left( n/q_{i}\right) \overline{Y}_{ij}\) and then:

$$\begin{aligned} \hat{\beta }_{ij}=\dfrac{1}{\left( 1-q_{i}\alpha _{i}\right) }\left( \overline{Y}_{ij}-\dfrac{1}{q_{i}} {\displaystyle \sum \limits _{j=1}^{q_{i}}} \overline{Y}_{ij}\right) =\dfrac{1}{\left( 1-q_{i}\alpha _{i}\right) }\left( \overline{Y}_{ij}-\overline{Y}\right) . \end{aligned}$$

Note that all these results are true under the constraints (5), that is without the removed parameters \(\beta _{iq_{i}}\) (\(i=1,\ldots ,p\)). We easily verify that the results are still true for these parameters using the relation:

$$\begin{aligned} \forall \, i=1,\ldots ,p, \beta _{iq_{i}}=-\sum _{j=1}^{q_{i}-1} \beta _{ij} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \square \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanna, H., Tinsson, W. A new class of designs for mixture-of-mixture experiments. Stat Papers 56, 311–331 (2015). https://doi.org/10.1007/s00362-014-0583-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-014-0583-9

Keywords

Mathematics Subject Classification 

Navigation