Skip to main content
Log in

The estimation and inference on the equal ratios of means to standard deviations of normal populations

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper considers the estimation and the hypothesis testing on the equality of the ratios of the means to standard deviations of several normal populations with difference sample sizes. We propose an iterative algorithm to find the maximum likelihood estimates (MLEs) of the normal population means and standard deviations when the ratios of the means to the standard deviations are equal. A bootstrap method is introduced to determine the critical value in the likelihood ratio test. The simulation studies indicate that the proposed hypothesis testing performs well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chou Y, Owen DB (1991) A likelihood test for the equality of proportion of two normal populations. Commun Stat 20:2357–2374

    Article  MATH  MathSciNet  Google Scholar 

  • Tsui KW, Weerahandi S (1989) Generalized \(p\)-values in significance testing of hypotheses in the presence of nuisance parameters. J Am Stat Assoc 84:602–607

    MathSciNet  Google Scholar 

  • Weerahandi S (1991) Testing variance components in mixed models with generalized \(p\)-values. J Am Stat Assoc 86:151–153

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Foundation of China (11271064) to Shuyou Li, and by Canada Natural Sciences and Engineering Research Council (NSERC) Discovery Grant to Wei Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Appendix

Appendix

Proof of Theorem in Sect. 2.

From the Eqs. (3) and (4), we have a set of equations

$$\begin{aligned} \left\{ \begin{array}{l} \frac{B_1^2-\sigma _1^2}{\sigma _1 \bar{X}_1}= \frac{c_1 \bar{X}_1}{\sigma _1} + \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k}\\ \frac{B_2^2-\sigma _2^2}{\sigma _2 \bar{X}_2}= \frac{c_1 \bar{X}_1}{\sigma _1} + \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k}\\ \cdots \cdots \\ \frac{B_k^2-\sigma _k^2}{\sigma _k \bar{X}_k}= \frac{c_1 \bar{X}_1}{\sigma _1} + \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \end{array} \right. \end{aligned}$$
(7)

whose equivalent equations are given as follows

$$\begin{aligned} \left\{ \begin{array}{l} \sigma _1 = \frac{1}{2} \left[ \sqrt{4 B_1^2\!+\!\bar{X}_1^2 \Bigg (\frac{c_1 \bar{X}_1}{\sigma _1} \!+\! \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \Bigg )^2} \!-\! \bar{X}_1 \Bigg ( \frac{c_1 \bar{X}_1}{\sigma _1} \!+\! \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \Bigg )\right] \\ \sigma _2 = \frac{1}{2} \left[ \sqrt{4 B_2^2\!+\!\bar{X}_2^2 \Bigg (\frac{c_1 \bar{X}_1}{\sigma _1} \!+\! \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \Bigg )^2} \!-\! \bar{X}_2 \Bigg ( \frac{c_1 \bar{X}_1}{\sigma _1} \!+\! \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \Bigg )\right] \\ \cdots \cdots \\ \sigma _k = \frac{1}{2} \left[ \sqrt{4 B_k^2\!+\!\bar{X}_k^2 \Bigg (\frac{c_1 \bar{X}_1}{\sigma _1} \!+\! \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \Bigg )^2} \!-\! \bar{X}_k \Bigg ( \frac{c_1 \bar{X}_1}{\sigma _1} \!+\! \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \Bigg )\right] . \end{array} \right. \end{aligned}$$

We can denote the above equations \({\varvec{\sigma }}={\varvec{\phi }}({\varvec{\sigma }})\), where \({\varvec{\sigma }}=(\sigma _1, \ldots , \sigma _k)'\), \({\varvec{\phi }}({\varvec{\sigma }}) = (\phi _1({\varvec{\sigma }}), \ldots , \phi _k({\varvec{\sigma }}))'\) with

$$\begin{aligned} \phi _i({\varvec{\sigma }})&= \frac{1}{2} \left[ \sqrt{4 B_i^2+\bar{X}_i^2 \Bigg (\frac{c_1 \bar{X}_1}{\sigma _1} + \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \Bigg )^2}\right. \\&\left. - \bar{X}_i \Bigg ( \frac{c_1 \bar{X}_1}{\sigma _1} + \frac{c_2 \bar{X}_2}{\sigma _2} + \cdots + \frac{c_k \bar{X}_k}{\sigma _k} \Bigg )\right] . \end{aligned}$$

In the proposed iterative algorithm, we set the initial values \(\hat{\lambda }^{(0)}=\frac{c_1 \bar{X}_1}{s_1} + \frac{c_2 \bar{X}_2}{s_2} + \cdots + \frac{c_k \bar{X}_k}{s_k}\) and \(\hat{\sigma }_{i}^{(0)}=s_i, \; i=1, \ldots , k\), and we have the iterative formulae

$$\begin{aligned} \left\{ \begin{array}{l} \hat{\sigma }_1^{(l+1)} = \frac{1}{2} \left[ \sqrt{4 B_1^2\!+\!\bar{X}_1^2 \Bigg (\frac{c_1 \bar{X}_1}{\hat{\sigma }_1^{(l)}} \!+\! \frac{c_2 \bar{X}_2}{\hat{\sigma }_2^{(l)}} + \cdots + \frac{c_k \bar{X}_k}{\hat{\sigma }_k^{(l)}} \Bigg )^2} \!-\! \bar{X}_1 \Bigg ( \frac{c_1 \bar{X}_1}{\hat{\sigma }_1^{(l)}} \!+\! \frac{c_2 \bar{X}_2}{\hat{\sigma }_2^{(l)}} + \cdots + \frac{c_k \bar{X}_k}{\hat{\sigma }_k^{(l)}} \Bigg )\right] \\ \hat{\sigma }_2^{(l+1)} = \frac{1}{2} \left[ \sqrt{4 B_2^2\!+\!\bar{X}_2^2 \Bigg (\frac{c_1 \bar{X}_1}{\hat{\sigma }_1^{(l)}} \!+\! \frac{c_2 \bar{X}_2}{\hat{\sigma }_2^{(l)}} + \cdots + \frac{c_k \bar{X}_k}{\hat{\sigma }_k^{(l)}} \Bigg )^2} \!-\! \bar{X}_2 \Bigg ( \frac{c_1 \bar{X}_1}{\hat{\sigma }_1^{(l)}} \!+\! \frac{c_2 \bar{X}_2}{\hat{\sigma }_2^{(l)}} + \cdots + \frac{c_k \bar{X}_k}{\hat{\sigma }_k^{(l)}} \Bigg )\right] \\ \cdots \cdots \\ \hat{\sigma }_k^{(l+1)} = \frac{1}{2} \left[ \sqrt{4 B_k^2\!+\!\bar{X}_k^2 \Bigg (\frac{c_1 \bar{X}_1}{\hat{\sigma }_1^{(l)}} \!+\! \frac{c_2 \bar{X}_2}{\hat{\sigma }_2^{(l)}} + \cdots + \frac{c_k \bar{X}_k}{\hat{\sigma }_k^{(l)}} \Bigg )^2} \!-\! \bar{X}_k \Bigg ( \frac{c_1 \bar{X}_1}{\hat{\sigma }_1^{(l)}} \!+\! \frac{c_2 \bar{X}_2}{\hat{\sigma }_2^{(l)}} + \cdots + \frac{c_k \bar{X}_k}{\hat{\sigma }_k^{(l)}} \Bigg )\right] . \end{array} \right. \nonumber \\ \end{aligned}$$
(8)

Note that we have the Jacobian matrix of \({\varvec{\phi }}({\varvec{\sigma }})\) as \(J({\varvec{\phi }})= \partial {\varvec{\phi }}({\varvec{\sigma }})/\partial {\varvec{\sigma }}\) with the \((i,j)\)th element

$$\begin{aligned} J_{ij}=\frac{c_j \bar{X}_j}{2 \sigma _j^2} \left[ \bar{X}_i-\frac{\bar{X}_i^2 \lambda }{\sqrt{4B_i^2+(\bar{X}_i \lambda )^2}} \right] . \end{aligned}$$

If the following limits exist,

$$\begin{aligned} \lim _{n_i \rightarrow \infty } P \Bigg \{ \max _{1 \le i \le k} \Bigg [ \Bigg | \bar{X}_i-\frac{\bar{X}_i^2 \lambda }{\sqrt{4 B_i^2+(\bar{X}_i\lambda )^2}} \Bigg | \Bigg ] < \frac{2}{\sum \limits _{i=1}^{k} \frac{c_i |\bar{X}_i|}{\sigma _i^2}}\Bigg \}=1, \quad i=1, \ldots , k, \end{aligned}$$

the Jacobian matrix \(J({\varvec{\phi }})\) of \({\varvec{\phi }}({\varvec{\sigma }})\) has row norm

$$\begin{aligned} ||J({\varvec{\phi }})||_{\infty }&= \max _{1 \le i \le k} \Bigg \{ \Bigg |\frac{\partial \phi _i({\varvec{\sigma }})}{\partial \sigma _1} \Bigg | + \cdots + \Bigg |\frac{\partial \phi _i({\varvec{\sigma }})}{\partial \sigma _k} \Bigg |\Bigg \}\\&= \left| \sum \limits _{i=1}^{k} \frac{c_i \bar{X}_i}{\sigma _i^2}\right| \max _{1 \le i \le k} \left\{ \frac{|\bar{X}_i|}{2} \Bigg | 1-\frac{\bar{X}_i \lambda }{\sqrt{4 B_i^2+\bar{X}_i^2 \lambda ^2}}\Bigg |\right\} <1 \end{aligned}$$

in probability. By the discriminants of the iterative solution of nonlinear equations, the vector sequence \(\{\hat{{\varvec{\sigma }}}^{(l)},\; l=1, 2, \ldots \}=\{(\hat{\sigma }_1^{(l)}, \ldots , \hat{\sigma }_k^{(l)})',\; l=1, 2, \ldots \}\) obtained by the iterative formulae (8) converges to the solution of the nonlinear equations (7).

Note that under the null hypothesis \(H_0\), we have the log-likelihood function

$$\begin{aligned} l_0&= -\frac{n}{2} \log (2 \pi ) - \sum \limits _{i=1}^{k} n_i \log \sigma _i - \frac{1}{2} \sum \limits _{i=1}^{k} \Bigg [ \frac{n_i s_i^2}{\sigma _i^2} + n_i \Bigg ( \frac{\bar{X}_i}{\sigma _i}-\lambda \Bigg )^2\Bigg ], \end{aligned}$$

from which we derive the matrix \(\Phi \) of the second partial derivatives of \(l_0\) with respect to the parameters \(({\varvec{\sigma }}, \lambda )'\)

$$\begin{aligned} \Phi&= \left[ \begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} \frac{\partial ^2 l_0}{\partial \sigma _1^2} &{}\frac{\partial ^2 l_0}{\partial \sigma _1 \partial \sigma _2}&{} \cdots &{} \frac{\partial ^2 l_0}{\partial \sigma _1 \partial \sigma _k}&{}\frac{\partial ^2 l_0}{\partial \sigma _1 \partial \lambda }\\ \frac{\partial ^2 l_0}{\partial \sigma _2 \sigma _1} &{}\frac{\partial ^2 l_0}{\partial \sigma _2^2}&{} \cdots &{} \frac{\partial ^2 l_0}{\partial \sigma _2 \partial \sigma _k}&{}\frac{\partial ^2 l_0}{\partial \sigma _2 \partial \lambda }\\ &{}&{}\cdots &{}&{}\\ \frac{\partial ^2 l_0}{\partial \sigma _k \partial \sigma _1} &{}\frac{\partial ^2 l_0}{\partial \sigma _k \partial \sigma _2}&{} \cdots &{} \frac{\partial ^2 l_0}{\partial \sigma _k^2}&{}\frac{\partial ^2 l_0}{\partial \sigma _k \partial \lambda }\\ \frac{\partial ^2 l_0}{\partial \lambda \partial \sigma _1} &{}\frac{\partial ^2 l_0}{\partial \lambda \partial \sigma _2}&{} \cdots &{} \frac{\partial ^2 l_0}{\partial \lambda \partial \sigma _k}&{}\frac{\partial ^2 l_0}{\partial \lambda ^2} \end{array} \right] \end{aligned}$$

where

$$\begin{aligned}&\frac{\partial ^2 l_0}{\partial \sigma _i \partial \sigma _j} = 0, \qquad i\ne j, \; i, \; j=1, \ldots , k,\\&\frac{\partial ^2 l_0}{\partial \sigma _i \partial \lambda } = \frac{\partial ^2 l_0}{\partial \lambda \partial \sigma _i}=-\frac{n_i \bar{X}_i}{\sigma _i^2}, \quad i=1, \ldots , k.\\&\frac{\partial ^2 l_0}{\partial \sigma _i^2} = \frac{n_i (\sigma _i^2+2 \lambda \bar{X}_i \sigma _i-3 s_i^2 - 3 \bar{X}_i^2)}{\sigma _i^4}, \quad i=1, \ldots , k,\\&\frac{\partial ^2 l_0}{\partial \lambda ^2} = -n. \end{aligned}$$

Thus the determinant of \(\Phi \) evaluated at the MLEs \((\hat{{\varvec{\sigma }}}_0, \hat{\lambda }_0)'\) of \(({\varvec{\sigma }}, \lambda )'\) is calculated as

$$\begin{aligned} |\Phi |_{(\hat{{\varvec{\sigma }}}_0, \hat{\lambda }_0)'}&= - \left[ \sum \limits _{i=1}^{k} \frac{n_i\left( \hat{\sigma }_{i0}^2 + 2 \hat{\lambda }_0 \bar{X}_i \hat{\sigma }_{i0} + \hat{\sigma }_{i0}^2 \bar{X}_i - 3 s_i^2 - 3 \bar{X}_i^2 \right) }{\hat{\sigma }_{i0}^2 + 2 \hat{\lambda }_0 \bar{X}_i \hat{\sigma }_{i0} -3 s_i^2 - 3 \bar{X}_i^2}\right] \times \left[ \,\prod _{i=1}^{k} \frac{n_i}{\hat{\sigma }_{i0}^4}\right] \\&\qquad \times \left[ \,\prod _{i=1}^{k}\left( \hat{\sigma }_{i0}^2 + 2 \hat{\lambda }_0 \bar{X}_i \hat{\sigma }_{i0} - 3 s_i^2 - 3 \bar{X}_i^2 \right) \right] . \end{aligned}$$

Since for any \(i\),

$$\begin{aligned} \lim _{n_i \rightarrow \infty } P\left( \hat{\sigma }_{i0}^2 + 2 \hat{\lambda }_0 \bar{X}_i \hat{\sigma }_{i0} - 3 s_i^2 - 3 \bar{X}_i^2 <0\right)&= 1, \qquad i=1, \dots , k, \end{aligned}$$

all the \(q\)th order leading principal minors of the matrix \(\Phi \) are negative in probability if \(q\) is odd and positive in probability if \(q\) is even. Therefore, the matrix \(\Phi \) is negative definite in probability. By the discriminants of multifunction extreme values, the solution \((\hat{\sigma }_{10}, \dots , \hat{\sigma }_{k0}, \hat{\lambda }_0)'\) is the maximizer of the log-likelihood function \(l_0\), and thus, it is the MLE of the parameter \((\sigma _1, \dots , \sigma _k, \lambda )'\) in the space \(\Theta _0\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Lu, X., Mi, Y. et al. The estimation and inference on the equal ratios of means to standard deviations of normal populations. Stat Papers 56, 157–165 (2015). https://doi.org/10.1007/s00362-013-0572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-013-0572-4

Keywords

Navigation