Skip to main content
Log in

Functional CLT of eigenvectors for large sample covariance matrices

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In order to investigate property of the eigenvector matrix of sample covariance matrix \(\mathbf {S}_n\), in this paper, we establish the central limit theorem of linear spectral statistics associated with a new form of empirical spectral distribution \(H^{\mathbf {S}_n}\), based on eigenvectors and eigenvalues of sample covariance matrix \(\mathbf {S}_n\). Using Bernstein polynomial approximations, we prove the central limit theorem for linear spectral statistics of \(H^{\mathbf {S}_n}\), indexed by a set of functions with continuous third order derivatives over an interval including the support of Marcenko–Pastur law. This result provides further evidences to support the conjecture that the eigenmatrix of sample covariance matrix is asymptotically Haar distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai ZD, Silverstein JW (1998) No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann Probab 26:316–345

    Article  MATH  MathSciNet  Google Scholar 

  • Bai ZD, Silverstein JW (2004) CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann Probab 32:553–605

    Article  MATH  MathSciNet  Google Scholar 

  • Bai ZD, Silverstein JW (2010) Spectral analysis of large dimensional random matrices, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Bai ZD, Yin YQ (1993) Limit of the smallest eigenvalue of large dimensional covariance matrix. Ann Probab 21(3):1275–1294

    Article  MATH  MathSciNet  Google Scholar 

  • Bai ZD, Silverstein JW, Yin YQ (1988) A note on the largest eigenvalue of a large dimensional sample covariance matrix. J Multiv Anal 26:166–168

    Article  MATH  MathSciNet  Google Scholar 

  • Bai ZD, Miao BQ, Pan GM (2007) On asymptotics of eigenvectors of large sample covariance matrix. Ann Probab 35:1532–1572

    Article  MATH  MathSciNet  Google Scholar 

  • Bai ZD, Wang XY, Zhou W (2010) Functional CLT for sample covariance matrices. Bernoulli 16(4):1086–1113

    Article  MATH  MathSciNet  Google Scholar 

  • Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Bordenave C, Guionnet A (2013) Localization and delocalization of eigenvectors for heavy-tailed random matrices. Probab Theory Relat Fields. 157:885–953. arXiv 1201:1862

    Google Scholar 

  • Erdös L, Schlein B, Yau H-T (2009a) Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann Probab 37(3):815–852

    Google Scholar 

  • Erdös L, Schlein B, Yau H-T (2009b) Local semicircle law and complete delocalization for Wigner random matrices. Commun Math Phys 287:641–655

    Google Scholar 

  • Jiang TF (2006) How many entries of a typical orthogonal matrix can be approximated by independent normals. Ann Probab 34(4):1497–1529

    Article  MATH  MathSciNet  Google Scholar 

  • Jing BY, Pan GM, Shao QM, Zhou W (2010) Nonparametric estimate of spectral density functions of sample covariance matrices: a first step. SNN Stat 38(6):3724–3750

    Article  MATH  MathSciNet  Google Scholar 

  • Johnstone IM (2001) On the distribution of the largest eigenvalue in principal components analysis. Ann Stat 29(2):295–327

    Article  MATH  MathSciNet  Google Scholar 

  • Jonsson D (1982) Some limit theorems for the eigenvalues of a sample covariance matrix. J Multiv Anal 12:1–38

    Article  MATH  Google Scholar 

  • Knowles A, Yin J (2013) Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields 155(3-4):543–582 arXiv:1102.0057v4

    Google Scholar 

  • Marčenko V, Pastur L (1967) Distribution of eigenvalues for some sets of random matrices. Math USSR-Sb 1:457–486

    Article  Google Scholar 

  • Schenker J (2009) Eigenvector localization for random band matrices with power law band width. Commun Math Phys 290(3):1065–1097

    Article  MATH  MathSciNet  Google Scholar 

  • Silverstein JW (1981) Describing the behavior of eigenvectors of random matrices using sequences of measures on orthogonal groups. SIAM J Math Anal 12:274–281

    Article  MATH  MathSciNet  Google Scholar 

  • Silverstein JW (1984) Some limit theorems on the eigenvectors of large dimensional sample covariance matrices. J Multiv Anal 15:295–324

    Article  MATH  MathSciNet  Google Scholar 

  • Silverstein JW (1989) On the eigenvectors of large dimensional sample covariance matrices. J Multiv Anal 30:1–16

    Article  MATH  MathSciNet  Google Scholar 

  • Silverstein JW (1990) Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann Probab 18:1174–1194

    Article  MATH  MathSciNet  Google Scholar 

  • Silverstein JW, Bai ZD (1995) On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J Multiv Anal 54:175–192

    Article  MATH  MathSciNet  Google Scholar 

  • Tao T, Vu V (2012) Random matrices: universal properties of eigenvectors. Random Matrices Theory Appl 1(1):1150001. arXiv: 1103.2801v2

    Google Scholar 

  • Tracy CA, Widom H (1994) Level-spacing distributions and the airy kernel. Commun Math Phys 159:151–174

    Article  MATH  MathSciNet  Google Scholar 

  • Xia NN, Qin YL, Bai ZD (2013) Convergence rate of empirical spectral and eigenvector distribution of large dimensional sample covariance matrix. Ann Stat 41(5):2572–2607

    Google Scholar 

  • Yin YQ (1986) Limiting spectral distribution for a class of random matrices. J Multiv Anal 20:50–68

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research of Ningning Xia was supported by the Fundamental Research Funds for the Central Universities 11SSXT131. Zhidong Bai was partially supported by NSF China 11171057, PCSIRT, the Fundamental Research Funds for the Central Universities and NUS Grant R-155-000-141-112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Bai.

Appendix

Appendix

Lemma 1

(Burkholder) (Lemma 2.2 of Bai and Silverstein 1998) Let \(X_k\), \(k=1,2,\ldots ,\) be a complex martingale difference sequence with respect to the increasing \(\sigma \)-fields \(\mathcal {F}_k\). Then, for \(p>1\),

$$\begin{aligned} \mathrm E \left| \sum X_k\right| ^p\le K_p\mathrm E \left( \sum |X_k|^2\right) ^{p/2}. \end{aligned}$$

where \(K_p\) is a constant which depends upon \(p\) only.

Lemma 2

(Lemma 2.6 of Silverstein and Bai 1995) Let \(z\in \mathbb {C}^+\) with \(v=\mathfrak {I}z\), \(\mathbf {A}\) and \(\mathbf {B}\) Hermitian and \(\mathbf {r}\in \mathbb {C}^n\). Then

$$\begin{aligned} \left| \mathrm tr \left( (\mathbf {B}-z\mathbf {I})^{-1} -(\mathbf {B}+\mathbf {rr}^*-z\mathbf {I})^{-1}\right) \mathbf {A}\right| =\left| \frac{\mathbf {r}^*(\mathbf {B}-z\mathbf {I})^{-1}\mathbf {A} (\mathbf {B}-z\mathbf {I})^{-1}\mathbf {r}}{1+\mathbf {r}^*(\mathbf {B}-z\mathbf {I})^{-1}\mathbf {r}}\right| \le \frac{\Vert \mathbf {A}\Vert }{v}. \end{aligned}$$

Lemma 3

((1.15) in Bai and Silverstein 2004) Let \(\mathbf {X}=(X_1,\ldots ,X_n)\), where \(X_i\)’s are i.i.d. complex random variables with mean zero and variance 1. Let \(\mathbf {A}=(a_{ij})_{n\times n}\) and \(\mathbf {B}=(b_{ij})_{n\times n}\) be complex matrices. Then the following identity holds:

$$\begin{aligned}&\mathrm E (\mathbf {X}^*\mathbf {AX}-\mathrm tr \mathbf {A}) (\mathbf {X}^*\mathbf {BX}-\mathrm tr \mathbf {B})\\&\qquad \qquad =(\mathrm E |X_1|^4-|\mathrm E X_1^2|^2-2)\sum \limits _{i=1}^na_{ii}b_{ii}+ |\mathrm E Y_1^2|^2\mathrm tr \mathbf {AB}^T+\mathrm tr \mathbf {AB}. \end{aligned}$$

Lemma 4

(Lemma 2.7 of Bai and Silverstein 1998) For \(\mathbf {X}=(X_1,\ldots ,X_n)^{\prime }\) with i.i.d. standardized real or complex entries such that \(\mathrm E X_i=0\) and \(\mathrm E |X_i|^2=1\), and for \(\mathbf {C}\) an \(n\times n\) complex matrix, we have, for any \(p\ge 2\),

$$\begin{aligned} \mathrm E |\mathbf {X}^*\mathbf {CX}-\mathrm tr \mathbf {C}|^p\le K_p\left[ \left( \mathrm E |X_i|^4\mathrm tr \mathbf {CC}^*\right) ^{p/2} +\mathrm E |X_i|^{2p}\mathrm tr (\mathbf {CC}^*)^{p/2}\right] . \end{aligned}$$

where \(K_p\) is a constant which depends upon \(p\) only.

Lemma 5

(Theorem 5.9 of Bai and Silverstein 2010) Suppose that the entries of the matrix \(\mathbf {X}=(X_{jk},j\le n,k\le N)\) are independent (not necessarily identically distributed) and satisfy

  1. (1)

    \(\hbox {E}X_{jk}=0\),

  2. (2)

    \(|X_{jk}|\le \sqrt{N}\delta _N,\)

  3. (3)

    \(\max _{j,k}|\hbox {E}|X_{jk}|^2-\sigma ^2|\rightarrow 0\) as \(N\rightarrow \infty \), and

  4. (4)

    \(\hbox {E}|X_{jk}|^l\le b(\sqrt{N}\delta _N)^{l-3}\) for all \(l\ge 3\),

where \(\delta _N\rightarrow 0\) and \(b>0\). Let \(\mathbf {S}_n=\mathbf {X}\mathbf {X}^*/N\). Then, for any \(x>\epsilon >0\) and integers \(j,k \ge 2\), we have

$$\begin{aligned} \hbox {P}\big (\lambda _{\hbox {max}}(\mathbf {S}_n)\ge \sigma ^2(1+\sqrt{c})^2+x\big )\le KN^{-k}\big (\sigma ^2(1+\sqrt{c})^2+x-\epsilon \big )^{-k} \end{aligned}$$

for some constant \(K>0\).

Lemma 6

(Lemma 8.20 in Bai and Silverstein 2010) If \(|z|<A\), \(v\ge CN^{-1/2}\) and \(l \ge 1\), then

$$\begin{aligned} \hbox {E}\big |m_n(z)-\hbox {E}m_n(z)\big |^{2l} \le \frac{K}{N^{2l}v^{4l}c^{2l}}\left( \Delta +\frac{v}{v_c}\right) ^l, \end{aligned}$$

where A is a positive constant, \(v_c=1-\sqrt{c}+\sqrt{v}\) and \(\Delta \equiv \Vert \hbox {E}F^{S_n}-F_{c} \Vert \).

Lemma 7

(Lemma 9.1 in Bai and Silverstein 2010) Suppose that \(X_i\), \(i=1,\ldots , n\), are independent, with \(\hbox {E}X_i=0\), \(\hbox {E}|X_i|^2=1\), \(\sup \hbox {E}|X_i|^4=\nu < \infty \) and \(|X_i|\le \eta \sqrt{n}\) with \(\eta >0\). Assume that \(\mathbf {A}\) is a complex matrix. Then for any given \(p\) such that \(2\le p \le b \log (n\nu ^{-1}\eta ^4 )\) and \(b>1\), we have

$$\begin{aligned} \hbox {E}\big |\mathbf {\alpha }^* \mathbf {A} \mathbf {\alpha } -\hbox {tr} (\mathbf {A})\big |^p \le \nu n^p(n\eta ^4)^{-1} \big (40b^2\Vert \mathbf {A}\Vert \eta ^2\big )^p, \end{aligned}$$

where \(\mathbf {\alpha }=(X_1,\ldots , X_n)^T\).

Lemma 8

Under the conditions of Theorem 1, for all \(|z|<A\) and \(\mathfrak {I}(z)\ge \eta _N N^{-1/2}\), there exists a constant \(K\), such that

$$\begin{aligned} |b_1(z)|\le K, \end{aligned}$$

where \(A\) is a positive constant.

Proof

From (3.3.1) in Bai and Silverstein (2010),

$$\begin{aligned} m(z)=\frac{1-c-z+\sqrt{(1-c-z)^2-4zc}}{2cz}, \end{aligned}$$

where the square root of a complex number is defined as

$$\begin{aligned} \sqrt{z}=\frac{\mathfrak {I}z}{\sqrt{2(|z|-\mathfrak {R}z)}}+i\frac{|\mathfrak {I}z|}{\sqrt{2(|z|+\mathfrak {R}z)}}. \end{aligned}$$

It is easy to verify that

$$\begin{aligned} b_0(z)\triangleq \frac{1}{1+cm(z)}=1-\sqrt{c}m_\mathrm{semi }\left( \frac{z-c-1}{\sqrt{c}}\right) , \end{aligned}$$

where \(m_\mathrm{semi }\)denotes the Stieltjes transform of semicircular law. By the fact that \(|m_\mathrm{semi }|\le 1\), we have

$$\begin{aligned} |b_0(z)|\le 1+\sqrt{c}. \end{aligned}$$

According to the relationship between \(b_0(z)\) and \(b_1(z)\),

$$\begin{aligned} b_1(z)-b_0(z)=-cb_1(z)b_0(z)\left( n^{-1}\mathrm Etr \mathbf {A}_1^{-1}(z)-m(z)\right) , \end{aligned}$$

we have

$$\begin{aligned} b_1(z)=\frac{b_0(z)}{1+cb_0(z)\left( n^{-1}\mathrm Etr \mathbf {A}_1^{-1}(z)-m(z)\right) }. \end{aligned}$$

For \(\mathfrak {I}(z)\ge \eta _N N^{-1/2}\), from the fact that \(|\mathrm Etr (\mathbf {A}_1^{-1}(z)-\mathbf {A}^{-1}(z))|\le \frac{1}{\mathfrak {I}(z)}\) and \(m_n(z)=n^{-1}\mathrm tr \mathbf {A}^{-1}(z)\), we can choose \(n\) large enough, such that

$$\begin{aligned} \frac{1}{n}\left| \mathrm Etr \left( \mathbf {A}_1^{-1}(z)\!-\!\mathbf {A}^{-1}(z)\right) \right| \!\le \!\frac{1}{n\mathfrak {I}(z)}\!\le \!\frac{1}{3(1+\sqrt{c})}, \quad \left| \mathrm E m_n(z)\!-\!m(z)\right| \le \frac{1}{3(1+\sqrt{c})}. \end{aligned}$$

Thus,

$$\begin{aligned} \left| \frac{1}{n}\mathrm Etr \mathbf {A}_1^{-1}(z)-m(z)\right|&\le \frac{1}{n}\left| \mathrm Etr \left( \mathbf {A}_1^{-1}(z)-\mathbf {A}^{-1}(z)\right) \right| +\left| \mathrm E m_n(z)-m(z)\right| \\&\le \frac{2}{3(1+\sqrt{c})}. \end{aligned}$$

Consequently, we obtain

$$\begin{aligned} |b_1(z)|\le 3(1+\sqrt{c})\le K. \end{aligned}$$

\(\square \)

Lemma 9

If \(|b_1(z)|\le K\) and \(v>O(N^{-1/2})\), then for any fixed \(t>0\),

$$\begin{aligned} P\left( |\beta _1(z)|>2K\right) =o(N^{-t}). \end{aligned}$$

Proof

Note that if \(|b_1(z)\tilde{\xi }_1(z)|\le 1/2\), then

$$\begin{aligned} |\beta _1(z)|=\frac{|b_1(z)|}{|1+b_1(z)\tilde{\xi }_1(z)|}\le \frac{|b_1(z)|}{1-|b_1(z)\tilde{\xi }_1(z)|}\le 2K. \end{aligned}$$

Thus,

$$\begin{aligned} P\left( |\beta _1(z)|>2K\right)&\le P\left( |b_1(z)\tilde{\xi }_1(z)|>\frac{1}{2}\right) \\&\le P\left( |\tilde{\xi }_1(z)|>\frac{1}{2K}\right) \\&\le (2K)^p\mathrm E |\tilde{\xi }_1(z)|^p. \end{aligned}$$

By the \(C_r\)-inequality, Lemmas 6 and 7, for some \(\eta =\eta _NN^{-1/4}\) and \(p\ge \log N\), we have

$$\begin{aligned} \hbox {E}\left| \tilde{\xi }_1(z)\right| ^p&\le \hbox {E}\left| \xi _1(z)\right| ^p +\hbox {E}\left| \frac{1}{N}\hbox {tr}\mathbf {A}_1^{-1}(z)-\frac{1}{N}\hbox {Etr}\mathbf {A}_1^{-1}(z)\right| ^p \\&\le K\big (N\eta _N^4N^{-1}\big )^{-1}\big (v^{-1}\eta _N^2N^{-1/2}\big )^p+\frac{K}{N^pv^{3p/2}v_c^{p/2}}\\&\le K\eta _N^{2p-4}\le K\eta _N^p. \end{aligned}$$

For any fixed \(t>0\), when \(N\) is large enough so that \(\log \eta _N^{-1}>t+1\), it can be shown that

$$\begin{aligned} \hbox {E}|\xi _1(z)|^p&\le K e^{-p\log \eta _N^{-1}} \le K e^{-p(t+1)}\\&\le Ke^{-(t+1)\log N}=KN^{-t-1}\\&= o(N^{-t}). \end{aligned}$$

Similarly, we can show that \(P\left( |\tilde{\beta }_1(z)|>2K\right) =o(N^{-t})\) and \(\mathrm E |\xi _1(z)|^p=o(N^{-t})\), for \(p\ge \log N\). Therefore, \(\beta _1(z)\) and \(\tilde{\beta }_1(z)\) are both bounded by a large constant almost surely by using Borel–Cantelli lemma. \(\square \)

Lemma 10

There exists a constant \(K\), such that \(\mathrm E \left| \mathbf {x}_n^*\mathbf {A}^{-1}(z)\mathbf {A}^{-1}(\bar{z})\mathbf {x}_n\right| \le K/v\).

Proof

In the paper, we assume that \(c=\lim n/N\) is away from 1, according to (8.4.9) in Bai and Silverstein (2010) that \(m(z)\) is bounded by a constant, thus we have \(\mathrm E |m_n^H(z)|\le K\) for some constant \(K\). Therefore,

$$\begin{aligned} \mathrm E \left| \mathbf {x}_n^*\mathbf {A}^{-1}(z)\mathbf {A}^{-1}(\bar{z})\mathbf {x}_n\right| =\mathrm E \left| v^{-1}\mathfrak {I}(\mathbf {x}_n^*\mathbf {A}^{-1}(z)\mathbf {x}_n)\right| \le K/v. \end{aligned}$$

\(\square \)

Lemma 11

\(|\nabla _2|\le O_p(N^{-\epsilon _0})\), when \(m=[N^{1/4+\epsilon _o}]\).

Proof

Using integral by parts, we get

$$\begin{aligned} |\nabla _2|&= \sqrt{N}\left| \int (f_m(x)-f(x))d(H^{S_n}(x)-F_{c_n}(x))\right| \\&= \sqrt{N}\left| \int \limits _{a_l}^{b_r}\left( f_m^{\prime }(x)-f^{\prime }(x)\right) \left( H^{S_n}(x)-F_{c_n}(x)\right) dx\right| ; \end{aligned}$$

Based on Theorem 1.6 in Xia et al. (2013), we know \(\Vert H^{S_n}-F_{c_n}\Vert =O_p(N^{-1/4})\), thus

$$\begin{aligned} |\nabla _2|\le KN^{1/4}\int \limits _{a_0}^{b_0}\left| \tilde{f}_m^{\prime }(y)-\tilde{f}^{\prime }(y)\right| dy, \end{aligned}$$

where \(a_0=La_l+t\), \(b_0=Lb_r+t\), and \(L=\frac{1-2\epsilon }{b_r-a_l}\), \(t=\frac{(a_l+b_r)\epsilon -a_l}{b_r-a_l}\). For

$$\begin{aligned} \tilde{f}^{\prime }_m(y)&= \sum \limits _{k=0}^m{m \atopwithdelims ()k}y^k(1-y)^{m-k} \left( \frac{k}{y}-\frac{m-k}{1-y}\right) \tilde{f}\Big (\frac{k}{m}\Big )\\&= \sum \limits _{k=0}^m{m \atopwithdelims ()k}y^k(1-y)^{m-k} \frac{k-my}{y(1-y)} \tilde{f}\Big (\frac{k}{m}\Big ). \end{aligned}$$

Then using Taylor expansion, we obtain

$$\begin{aligned} \tilde{f}\Big (\frac{k}{m}\Big )=\tilde{f}(y)\!+\!\tilde{f}^{\prime }(y)\left( \frac{k}{m}-y\right) \!+\! \frac{1}{2}\tilde{f}^{\prime \prime }(y)\left( \frac{k}{m}-y\right) ^2\!+\! \frac{1}{6}\tilde{f}^{(3)}(\xi _{k,y})\left( \frac{k}{m}-y\right) ^3, \end{aligned}$$

where \(\xi _{k,y}\) is a number between \(k/m\) and \(y\).

Substituting the above equality into \(\tilde{f}^{\prime }_m(y)\) and again noticing \(\sum \nolimits _{k=0}^m {m\atopwithdelims ()k}y^k(1-y)^{m-k}\left( \frac{k}{m}-y\right) =0\), we obtain

$$\begin{aligned}&\tilde{f}^{\prime }_m(y)-\tilde{f}^{\prime }(y)\\&\quad =\frac{1}{2}\sum \limits _{k=0}^m{m \atopwithdelims ()k}y^k(1-y)^{m-k} \frac{k-my}{y(1-y)}\\&\qquad \times \left[ \left( \frac{k}{m}-y\right) ^2\tilde{f}^{\prime \prime }(y)+\frac{1}{3}\left( \frac{k}{m}-y\right) ^3\tilde{f}^{(3)}(\xi _{k,y})\right] \\&\quad =O\left( \frac{1}{m}\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} |\nabla _2|\le \frac{K}{m}N^{1/4}=O_p(N^{-\epsilon _0}). \end{aligned}$$

\(\square \)

Lemma 12

Under the condition of Theorem 1, we have

$$\begin{aligned} \max _{j}\left| \mathrm E _{j-1} \sum \limits _{i=1}^n\left( \left[ \mathrm E _j\mathbf {A}_j^{-1}(z_1)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z_1)\right] _{ii} \left[ \mathrm E _j\mathbf {A}_j^{-1}(z_2)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z_2)\right] _{ii}\right) \right| =o_p(1), \end{aligned}$$

uniformly in \(\gamma _{mh}\cup \gamma _{mh}^{\prime }\), where the maximum is taken over all \(1\le i\le n\) and \(1\le j\le N\).

Proof

First, let \(\mathbf {e}_i(1\le i\le n)\) be the \(n\)-vector whose \(i\)th element is one, the rest being zero and \(\mathbf {e}_i^{\prime }\), the transpose of \(\mathbf {e}_i\). Then by using Lemma 4 and Cauchy–Schwartz inequality, we obtain

$$\begin{aligned}&\mathrm E \left| \left[ \mathbf {A}_j^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z)\right] _{ii} -\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z)\right] _{ii}\right| \\&\quad =\mathrm E \left| \mathbf {e}_i^{\prime }\left( \mathbf {A}_j^{-1}(z)-\mathbf {A}^{-1}(z)\right) \mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z)\mathbf {e}_i\right| \quad \mathrm by (4) \\&\quad =\mathrm E \left| \beta _j(z)\mathbf {e}_i^{\prime }\mathbf {A}_j^{-1}(z)\mathbf {s}_j\mathbf {s}_j^*\mathbf {A}_j^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z)\mathbf {e}_i\right| \\&\quad \le \frac{K}{N}\left( E\left| \mathbf {X}_j^*\mathbf {A}_j^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z)\mathbf {e}_i\mathbf {e}_i^{\prime }\mathbf {A}_j^{-1}(z)\mathbf {X}_j -\mathbf {x}_n^*\mathbf {A}_j^{-1}(z)\mathbf {e}_i\mathbf {e}_i^{\prime }\mathbf {A}_j^{-2}(z)\mathbf {x}_n\right| ^{2}\right) ^{1/2}\\&\qquad +\frac{K}{N}\mathrm E \left| \mathbf {x}_n^*\mathbf {A}_j^{-1}(z)\mathbf {e}_i\mathbf {e}_i^{\prime }\mathbf {A}_j^{-2}(z)\mathbf {x}_n\right| \\&\quad \le \frac{K}{Nv^2}. \end{aligned}$$

Similarly, we can show that

$$\begin{aligned} \mathrm E \left| \left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z)\right] _{ii}-\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}\right| \le \frac{K}{Nv^2}. \end{aligned}$$

Second, by martingale inequality, for any \(\epsilon >0\), we have

$$\begin{aligned}&P\left( \max _{i,j}\left| \mathrm E _j\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii} -\mathrm E \left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}\right| >\epsilon \right) \\&\quad \le nP\left( \max _j \left| \mathrm E _j\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii} -\mathrm E \left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}\right| >\epsilon \right) \\&\quad \le \frac{n}{\epsilon ^6}\mathrm E \left| \left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}-\mathrm E \left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}\right| ^{6}\\&\quad =\frac{n}{\epsilon ^6}\mathrm E \bigg |\sum \limits _{l=1}^N(\mathrm E _l-\mathrm E _{l-1})\bigg ( \left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}-\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}\\&\qquad +\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}-\left[ \mathbf {A}_l^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}\bigg )\bigg |^6\\&\quad \le nK\mathrm E \bigg (\sum \limits _{l=1}^N\bigg |(\mathrm E _l-\mathrm E _{l-1})\bigg ( \left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}-\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}\\&\qquad +\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}-\left[ \mathbf {A}_l^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}\bigg )\bigg |^2\bigg )^3\\&\quad \le nK\mathrm E \bigg (\sum \limits _{l=1}^N(\mathrm E _l-\mathrm E _{l-1}) \bigg |\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}-\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}\bigg |^2\\&\qquad +\bigg |\left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}-\left[ \mathbf {A}_l^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_l^{-1}(z)\right] _{ii}\bigg |^2\bigg )^3\\&\quad \le nK\left( \sum \limits _{l=1}^N\frac{1}{N^2v^4}\right) ^3\le \frac{K}{N^2v^{12}}. \end{aligned}$$

Together with

$$\begin{aligned}&\mathrm E \left[ \mathbf {A}^{-1}(z)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z)\right] _{ii}=\frac{1}{n}\mathrm E \mathbf {x}_n^*\mathbf {A}^{-2}(z)\mathbf {x}_n. \end{aligned}$$

Finally, we obtain

$$\begin{aligned}&\max _{j}\left| \mathrm E _{j-1} \left( \sum \limits _{i=1}^N\left[ \mathrm E _j\mathbf {A}_j^{-1}(z_1)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z_1)\right] _{ii} \left[ \mathrm E _j\mathbf {A}_j^{-1}(z_2)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}_j^{-1}(z_2)\right] _{ii}\right) \right| \\&\quad =n \left| \mathrm E \left[ \mathbf {A}^{-1}(z_1)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z_1)\right] _{ii} \times \mathrm E \left[ \mathbf {A}^{-1}(z_2)\mathbf {x}_n\mathbf {x}_n^*\mathbf {A}^{-1}(z_2)\right] _{ii}\right| +o_p(1)\\&\quad =\frac{1}{n}\left| \mathrm E \mathbf {x}_n^*\mathbf {A}^{-2}(z_1)\mathbf {x}_n\right| \times \left| \mathrm E \mathbf {x}_n^*\mathbf {A}^{-2}(z_2)\mathbf {x}_n\right| +o_p(1)=o_p(1). \end{aligned}$$

The proof of Lemma 12 is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, N., Bai, Z. Functional CLT of eigenvectors for large sample covariance matrices. Stat Papers 56, 23–60 (2015). https://doi.org/10.1007/s00362-013-0565-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-013-0565-3

Keywords

Mathematics Subject Classification

Navigation