Skip to main content
Log in

Adjusted empirical likelihood for right censored lifetime data

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Adjusted empirical likelihood (AEL) is a method to improve the performance of the empirical likelihood (EL) particularly in the construction of the confidence interval based on completely observed data. In this paper, we extend AEL approach to the analysis of right censored data by adopting an influence function method. The main results include that the adjusted log-likelihood ratio is asymptotically Chi-squared distributed. Simulation results indicate that the proposed AEL-based confidence intervals perform better compared with normality-based or EL-based confidence intervals specifically for small sample size within the right-censoring setting. The proposed method is illustrated by analysis of survival time of patients after operation for spinal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Chen J, Variyath AM, Abraham B (2008) Adjusted empirical likelihood and its properties. J Comput Graph Stat 17:426–443

    Article  MathSciNet  Google Scholar 

  • Chen SX, Cui HJ (2007) On the second-order properties of empirical likelihood with moment restrictions. J Econom 141:492–516

    Article  MathSciNet  Google Scholar 

  • Diciccio TJ, Hall P, Romano JP (1991) Empirical likelihood is Bartlett-correctable. Ann Stat 119:1053–1061

    Article  MathSciNet  Google Scholar 

  • He S, Liang W, Shen J, Yang G (2012) Empirical likelihood for right censored lifetime data. arXiv:1203.5955v1.

  • Hall P, La Scala B (1990) Methodology and algorithms of empirical likelihood. Int Stat Rev 58:109–127

    Article  MATH  Google Scholar 

  • Imbens GW (1997) One-step estimators for over-identified generalized method of moments models. Rev Econom Stud 64:359–383

    Article  MATH  MathSciNet  Google Scholar 

  • Kumazawa Y (1987) A note on an estimator of life expectancy with random censorship. Biometrika 74:655–658

    Article  MATH  MathSciNet  Google Scholar 

  • Liu Y, Chen J (2010) Adjusted empirical likelihood with high-order precision. Ann Stat 38:1341–1362

    Article  MATH  Google Scholar 

  • Metcalfe S, Gbejuade H, Patel NR (2012) The posterior transpedicular approach for circumferential decompression and instrumented stabilization with titanium cage vertebrectomy reconstruction for spinal tumors: consecutive case series of 50 patients. Spine 37:1375–1383

    Article  Google Scholar 

  • Newey WK, Smith RJ (2004) Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 72:219–255

    Article  MATH  MathSciNet  Google Scholar 

  • Owen AB (1988) Empirical likelihood ratio confidence intervals for single functional. Biometrika 75:237–249

    Article  MATH  MathSciNet  Google Scholar 

  • Owen AB (1990) Empirical likelihood ratio confidence regions. Ann Stat 18:90–120

    Article  MATH  MathSciNet  Google Scholar 

  • Qin GS, Zhao YC (2007) Empirical likelihood inference for the mean residual life under random censorship. Stat Probab Lett 77:549–557

    Article  MATH  MathSciNet  Google Scholar 

  • Qin J, Lawless J (1994) Empirical likelihood and general equations. Ann Stat 22:300–325

    Article  MATH  MathSciNet  Google Scholar 

  • Shen J, Liang W, He S (2012) Likelihood ratio inference for mean residual life. Stat Pap 53:401–408

    Article  MATH  MathSciNet  Google Scholar 

  • Stute W (1996) The Jackknife estimate of variance of a Kaplan–Meier integral. Ann Stat 24:2679–2704

    Article  MATH  MathSciNet  Google Scholar 

  • Tsao M (2004) Bounds on coverage probabilities of the empirical likelihood ratio confidence regions. Ann Stat 32:1215–1221

    Article  MATH  MathSciNet  Google Scholar 

  • Wang QH, Jing BY (2001) Empirical likelihood for a class of functions of survival distribution with censored data. Ann Inst Stat Math 53:517–527

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Nitin R.Patel for sharing his operation data with us and permitting us using our methods to analyze the data. We would also like to acknowledge the referees for their constructive and helpful comments and their comments led to substantial improvements in the manuscript. Research Supported by National Natural Science Foundation of China (11171230,10801003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshan Shen.

Appendix

Appendix

Proof of Theorem 2:

To determine \(R({\theta }_0;a_n)\), we solve for the Lagrange multipliers \(\mu \) and \(\lambda \) in

$$\begin{aligned} A=\sum _{i=1}^{n+1} \log ((n+1)p_i) - (n+1)\lambda \sum _{i=1}^{n+1} p_iW_{ni}-\mu \big (1-\sum _{i=1}^{n+1} p_i\big ). \end{aligned}$$

Then \(\mu =-n-1\) and \(p_{i}=\dfrac{1}{n+1}(1+\lambda W_{ni})^{-1},\ i=1,2,\ldots ,n,\) where \(\lambda \) is the solution of

$$\begin{aligned} \sum _{i=1}^{n+1}\frac{W_{ni}}{1+\lambda {W_{ni}}}=0. \end{aligned}$$
(6.1)

As \(W_{n{n+1}}\) and \(\overline{W}_n=n^{-1}\sum _{i=1}^nW_{ni}\) are on the opposite sides of 0, the solution of (6.1) exists.

The EL ratio of \({\theta }\) can be written as

$$\begin{aligned} R({\theta }_0;a_n)=\prod _{i=1}^{n+1}((n+1)p_{i})=\prod _{i=1}^{n+1}(1+\lambda W_{ni})^{-1}. \end{aligned}$$
(6.2)

Let \(\sigma ^2=Var(W_i)\) for \(W_i\) defined in (3.3) and \(\lambda \) be the solution of (6.1). We prove that \(\lambda =O_p(n^{-\frac{1}{2}})\).

Denote \(W^{*}={\max }_{1\le {i}\le {n}}|W_{ni}|\). From Lemma 4.3 in He et al. (2012), we have

$$\begin{aligned}&W^{*}=o_p(n^{\frac{1}{2}}), \nonumber \\&\overline{W}_n \equiv n^{-1}\sum _{i=1}^nW_{ni}=O_p(n^{-\frac{1}{2}}), \nonumber \\&n^{-1}\sum _{i=1}^nW_{ni}^2=\sigma ^2+o_p(1). \end{aligned}$$
(6.3)

Let \(\rho =|\lambda |, \hat{\lambda }=\lambda /\rho \). Multiplying \(n^{-1}\hat{\lambda }\) to both sides of (6.1), we have

$$\begin{aligned} 0&= \frac{\hat{\lambda }}{n}\sum _{i=1}^{n+1}\frac{W_{ni}}{1+\lambda {W_{ni}}} \nonumber \\&= \frac{\hat{\lambda }}{n}\sum _{i=1}^{n+1}W_{ni}-\frac{\rho }{n}\sum _{i=1}^{n+1}\frac{(\hat{\lambda }W_{ni})^2}{1+\rho \hat{\lambda }{W_{ni}}} \nonumber \\&\le \hat{\lambda }\overline{W}_n(1-{a_n}/{n})-\frac{\rho }{n(1+\rho {W^*})}\sum _{i=1}^{n}(\hat{\lambda }W_{ni})^2. \end{aligned}$$
(6.4)

Using \(a_n=o_p(n)\) and (6.3), we get

$$\begin{aligned} \frac{\rho }{1+\rho {W^*}}&\le \hat{\lambda }\overline{W}_n(1-a_n/n)\Big (n^{-1}\sum _{i=1}^nW_{ni}^2 \Big )^{-1}\\&= O_p(n^{-1/2})(1-o_p(1))(\sigma ^2+o_p(1))^{-1}\\&= O_p(n^{-1/2}). \end{aligned}$$

It follows that \(\rho =|\lambda |=O_p(n^{-1/2})\).

Denoting \(\hat{V}_n=n^{-1}\sum _{i=1}^{n}W_{ni}^2\), we get

$$\begin{aligned} 0&= \frac{1}{n}\sum _{i=1}^{n+1}\frac{W_{ni}}{1+\lambda {W_{ni}}}\\&= \frac{1}{n}\sum _{i=1}^{n+1}W_{ni}-\frac{1}{n}\sum _{i=1}^{n+1}\frac{\lambda {W_{ni}}^2}{1+\lambda {W_{ni}}}\\&= \overline{W}_n-\lambda \hat{V}_n+o_p(n^{-\frac{1}{2}}). \end{aligned}$$

As \(n\rightarrow {\infty }\), we have \(\lambda =\hat{V}_n^{-1}\overline{W}_n+o_p(n^{-\frac{1}{2}})\).

Finally, we use Taylor expansion for \(l(\theta _0;a_n)=-2\log R(\theta _0;a_n)\) and have

$$\begin{aligned} -2\log R(\theta _0;a_n)&= 2\sum _{i=1}^{n+1}\log (1+\lambda {W}_{ni})\\&= 2\sum _{i=1}^{n+1}\{\lambda {W}_{ni}-\frac{(\lambda {W}_{ni})^2}{2}\}+o_p(1). \end{aligned}$$

Using \(\lambda =\hat{V}_n^{-1}\overline{W}_n+o_p(n^{-\frac{1}{2}})\), we have

$$\begin{aligned} -2\log R(\theta _0;a_n)=n\overline{W}_n^2\hat{V}_n^{-1}+o_p(1). \end{aligned}$$

From Lemma 4.3 of He et al. (2012), we see \( n^{\frac{1}{2}}\overline{W}_n =n^{-\frac{1}{2}}\sum _{i=1}^nW_{ni}\rightarrow {N(0, \sigma ^2)}\) in distribution. Hence \(n\overline{W}_n^2\hat{V}_n^{-1}\rightarrow {\chi _1^2}\) in distribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Shen, J. & He, S. Adjusted empirical likelihood for right censored lifetime data. Stat Papers 55, 827–839 (2014). https://doi.org/10.1007/s00362-013-0529-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-013-0529-7

Keywords

Mathematics Subject Classification (2000)

Navigation