Skip to main content
Log in

Distribution of product and quotient of bivariate generalized exponential distribution

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this work we derive closed form expressions for the probability density functions and moments of the quotient and product of the components of the bivariate generalized exponential distribution introduced by Kundu and Gupta (J Multivariate Anal, 100:581–593, 2009) and compute the percentage points. The derivations will be useful for practitioners of this bivariate model. We then give a real data application of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abouammoh AM, Alshingiti AM (2009) Reliability estimation of generalized inverted exponential distribution. J Stat Comput Simul 79:1301–1315

    Article  MATH  MathSciNet  Google Scholar 

  • Ali MM, Pal M, Woo J (2007) On the ratio of inverted gamma variates. Aust J Stat 36:153–159

    Google Scholar 

  • Ashour SK, Amin EA, Muhammed HZ (2009) Moment generating function of the bivariate generalized exponential distribution. Appl Math Sci 3:2911–2918

    MATH  MathSciNet  Google Scholar 

  • Bacchi B, Becciu G, Kottegoda NT (1994) Bivariate exponential model applied to intensities and durations of extreme rainfall. J Hydrol 155: 225–236.

    Google Scholar 

  • Bowman KO, Shenton LR, Gailey PC (1998) Distribution of the ratio of gamma variates. Comm Stat Simul Comput 27:1–19

    Article  MATH  MathSciNet  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series, and products, 6th edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Gupta RD, Kundu D (1999) Generalized exponential distributions. Aust N Z J Stat 41:173–188

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta RD, Kundu D (2007) Generalized exponential distribution: Existing results and some recent developments. J Stat Plan Inference 137:3537–3547

    Article  MATH  MathSciNet  Google Scholar 

  • Joarder AH (2009) Moments of the product and ratio of two correlated chi-square variables. Stat Pap 50:581–592

    Article  MATH  MathSciNet  Google Scholar 

  • Kundu D, Gupta RD (2009) Bivariate generalized exponential distribution. J Multivariate Anal 100:581–593.

    Google Scholar 

  • Mukherjee D, Mansour N (1996) Estimation of flood forecasting errors and flow-duration joint probabilities of exceedance. J Hydraul Eng (ASCE) 122:130–140.

    Google Scholar 

  • Nadarajah S (2005) Products, and ratios for a bivariate gamma distribution. Appl Math Comput 171:581–595

    Article  MATH  MathSciNet  Google Scholar 

  • Nadarajah S (2006) Sums, products, and ratios of generalized beta variables. Stat Pap 47:69–90

    Article  MATH  Google Scholar 

  • Nadarajah S, Kotz S (2006a) Reliability models based on bivariate exponential distributions. Probab Eng Mech 21:338–351

    Article  MathSciNet  Google Scholar 

  • Nadarajah S, Kotz S (2006b) Sums, products, and ratios for downtons bivariate exponential distribution. Stoch Environ Res Risk Assess 20:164–170.

    Google Scholar 

  • Nadarajah S (2007) Jensen’s bivariate gamma distribution: ratios of components. J Stat Comput Simul 77:349–358

    Article  MATH  MathSciNet  Google Scholar 

  • Nadarajah S (2009) A bivariate distribution with gamma and beta marginals with application to drought data. J Appl Stat 36:277–301

    Article  MATH  MathSciNet  Google Scholar 

  • Shakil M, Golam Kibria BM (2008) Distributions of the product and ratio of Maxwell and Rayleigh random variables. Stat Pap 49:729–747

    Article  MATH  MathSciNet  Google Scholar 

  • Yue S (2001) Applicability of the Nagao-Kadoya bivariate exponential distribution for modeling two correlated exponentially distributed variates. Stoch Environ Res Risk Assess 15:244–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali İ. Genç.

Appendix A: likelihood estimating equations

Appendix A: likelihood estimating equations

Given a random sample \(z_{1}\), \(z_{2}\), ...,\(z_{n}\) from (5) with gamma function replacements for the binomial coefficients, the log-likelihood function becomes

$$\begin{aligned} l(\alpha _{1},\alpha _{2},\alpha _{3})&= \sum _{k=1}^{n}\log \left[ \alpha _{2}(\alpha _{1}+\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }S_{ij}+\alpha _{1}(\alpha _{2}+\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }T_{ij}\right. \nonumber \\&\quad \left. +\frac{\alpha _{3}}{2\sqrt{z_{k}}}(1-e^{-\sqrt{z_{k}}})^{\alpha _{1}+\alpha _{2}+\alpha _{3}-1}e^{-\sqrt{z_{k}}}\right] , \end{aligned}$$
(23)

where

$$\begin{aligned} S_{ij}=\frac{(-1)^{i+j}\Gamma (\alpha _{1}+\alpha _{3})\Gamma (\alpha _{2})}{ij\Gamma (i)\Gamma (j)\Gamma (\alpha _{1}+\alpha _{3}-i)\Gamma (\alpha _{2}+j)} I(\sqrt{z_{k}};i+1,z_{k},j+1) \end{aligned}$$
(24)

and

$$\begin{aligned} T_{ij}&= (-1)^{i+j} \frac{(-1)^{i+j}\Gamma (\alpha _{2}+\alpha _{3})\Gamma (\alpha _{1})}{ij\Gamma (i)\Gamma (j)\Gamma (\alpha _{2}+\alpha _{3}-i)\Gamma (\alpha _{1}+j)} \\ \nonumber&\quad \times \left( 2K_{0}\bigl (2\sqrt{z_{k}(i+1)(j+1)}\bigr )-I(\sqrt{z_{k}};j+1,z_{k},i+1)\right) . \end{aligned}$$
(25)

The maximum likelihood estimates are the parameter values that give the maximum value of (23). Taking the partial derivatives of the log-likelihood function with respect to the parameters and then equating them to zero, we get the estimating equations as

$$\begin{aligned} \frac{\partial l}{\partial \alpha _{1}}&= \sum _{k=1}^{n}\left\{ \alpha _{2}\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }S_{ij}\!+\!\alpha _{2}(\alpha _{1}\!+\!\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }S_{ij}[\psi (\alpha _{1}\!+\!\alpha _{3})\!-\!\psi (\alpha _{1}\!+\!\alpha _{3}\!-\!i)]\right. \nonumber \\&\quad +(\alpha _{2}+\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }T_{ij}+\alpha _{1}(\alpha _{2}+\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }T_{ij}[\psi (\alpha _{1})-\psi (\alpha _{1}+j)] \nonumber \\&\quad \left. +\frac{\alpha _{3}e^{-\sqrt{z_{k}}}}{2\sqrt{z_{k}}}(1-e^{-\sqrt{z_{k}}})^{\alpha _{1}+\alpha _{2}+\alpha _{3}-1}\log (1-e^{-\sqrt{z_{k}}})\right\} /f_{Z}(z_{k})=0, \end{aligned}$$
(26)
$$\begin{aligned} \frac{\partial l}{\partial \alpha _{2}}&= \sum _{k=1}^{n}\left\{ (\alpha _{1}+\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }S_{ij}+\alpha _{2}(\alpha _{1}+\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }S_{ij}[\psi (\alpha _{2})-\psi (\alpha _{2}+j)]\nonumber \right. \\&\quad \!+\!\alpha _{1}\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }T_{ij}\!+\!\alpha _{1}(\alpha _{2}+\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }T_{ij}[\psi (\alpha _{2}\!+\!\alpha _{3})\!-\!\psi (\alpha _{2}\!+\!\alpha _{3}-i)]\nonumber \\&\quad \left. +\frac{\alpha _{3}e^{-\sqrt{z_{k}}}}{2\sqrt{z_{k}}}(1-e^{-\sqrt{z_{k}}})^{\alpha _{1}+\alpha _{2}+\alpha _{3}-1}\log (1-e^{-\sqrt{z_{k}}})\right\} /f_{Z}(z_{k})=0, \end{aligned}$$
(27)
$$\begin{aligned} \frac{\partial l}{\partial \alpha _{3}}&= \sum _{k=1}^{n}\left\{ \alpha _{2}\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }S_{ij}\!+\!\alpha _{2}(\alpha _{1}\!+\!\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }S_{ij}\big [\psi (\alpha _{1}\!+\!\alpha _{3})\!-\!\psi (\alpha _{1}\!+\!\alpha _{3}\!-\!i)\big ]\nonumber \right. \\&\quad +\alpha _{1}\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }T_{ij}\!+\!\alpha _{1}(\alpha _{2}\!+\!\alpha _{3})\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }T_{ij}\big [\psi (\alpha _{2}+\alpha _{3})-\psi (\alpha _{2}+\alpha _{3}-i)\big ] \nonumber \\&\quad \left. +\frac{e^{-\sqrt{z_{k}}}(1-e^{-\sqrt{z_{k}}})^{\alpha _{1}+\alpha _{2}+\alpha _{3}-1}}{2\sqrt{z_{k}}}(1+\alpha _{3}\log (1-e^{-\sqrt{z_{k}}})\right\} /f_{Z}(z_{k})=0,\nonumber \\ \end{aligned}$$
(28)

where \(\psi (\cdot )=\Gamma ^{^{\prime }}(\cdot )/\Gamma (\cdot )\) is the digamma function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genç, A.İ. Distribution of product and quotient of bivariate generalized exponential distribution. Stat Papers 55, 785–803 (2014). https://doi.org/10.1007/s00362-013-0527-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-013-0527-9

Keywords

Mathematics Subject Classification (2000)

Navigation