Skip to main content
Log in

Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Grubbs’s model (Grubbs, Encycl Stat Sci 3:42–549, 1983) is used for comparing several measuring devices, and it is common to assume that the random terms have a normal (or symmetric) distribution. In this paper, we discuss the extension of this model to the class of scale mixtures of skew-normal distributions. Our results provide a useful generalization of the symmetric Grubbs’s model (Osorio et al., Comput Stat Data Anal, 53:1249–1263, 2009) and the asymmetric skew-normal model (Montenegro et al., Stat Pap 51:701–715, 2010). We discuss the EM algorithm for parameter estimation and the local influence method (Cook, J Royal Stat Soc Ser B, 48:133–169, 1986) for assessing the robustness of these parameter estimates under some usual perturbation schemes. The results and methods developed in this paper are illustrated with a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew-normal distribution. J Royal Stat Soc Series B 61:579–602

    Article  MATH  MathSciNet  Google Scholar 

  • Barnett VD (1969) Simultaneous pairwise linear structural relationships. Biometrics 25:129–142

    Article  Google Scholar 

  • Branco MD, Dey DK (2001) A general class of multivariate skew-elliptical distribution. J Multivar Anal 79:93–113

    Article  MathSciNet  Google Scholar 

  • Cao CZ, Lin JG, Zhu XX (2012) On estimation of a heteroscedastic measurement error model under heavy-tailed distributions. Comput Stat Data Anal 56:438–448

    Article  MATH  MathSciNet  Google Scholar 

  • Cook RD (1986) Assessment of local influence (with discussion). J Royal Stat Soc Ser B 48:133–169

    MATH  Google Scholar 

  • De Castro M, Galea MG, Bolfarine H (2007) Local influence assessment in heteroscedastic measurement error models. Comput Stat Data Anal 52:1132–1142

    Article  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc Ser B 39:1–22

    MATH  MathSciNet  Google Scholar 

  • Grubbs FE (1983) Grubbs estimator. Encycl Stat Sci 3:42–549

    Google Scholar 

  • Ho H, Lin T (2010) Robust linear mixed models using the skew t distribution with application to schizophrenia data. Biom J 52:1–21

    Article  MathSciNet  Google Scholar 

  • Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lachos VH, Ghosh P, Arellano-Valle RB (2010) Likelihood based inference for skew-normal/independent linear mixed models. Stat Sinica 20:303–322

    MATH  MathSciNet  Google Scholar 

  • Lachos VH, Montenegro LC, Bolfarine H (2008) Inference and local influence assessment in skew-normal null intercept measurement error model. J Stat Comput Simul 78:395–419

    Article  MATH  MathSciNet  Google Scholar 

  • Lachos VH, Vilca LF, Galea M (2007) Influence diagnostics for the Grubbs’ model. Stat Pap 48:419–436

    Article  MATH  MathSciNet  Google Scholar 

  • Lange KL, Little JA, Taylor MGJ (1989) Robust statistical modeling using the t distribution. J Am Stat Assoc 84:881–896

    MathSciNet  Google Scholar 

  • Lange KL, Sinsheimer JS (1993) Normal/independent distributions and their applications in robust regression. J Comput Graph Stat 2:175–198

    MathSciNet  Google Scholar 

  • Lee SY, Xu L (2004) Influence analysis of nonlinear mixed-effects models. Comput Stat Data Anal 45:321–341

    Article  MATH  MathSciNet  Google Scholar 

  • Lu B, Song XY (2006) Local influence of multivariate probit latent variable models. J Multivar Anal 97:1783–1798

    Article  MATH  MathSciNet  Google Scholar 

  • Meng XL, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–278

    Article  MATH  MathSciNet  Google Scholar 

  • Montenegro LC, Bolfarine H, Lachos VH (2009) Influence diagnostics for a skew extension of the Grubbs model. Commun Stat Simul Comput 38:667–681

    Article  MATH  MathSciNet  Google Scholar 

  • Montenegro LC, Bolfarine H, Lachos VH (2010) Inference for a skew extension of the Grubbs model. Stat Pap 51:701–715

    Article  MATH  MathSciNet  Google Scholar 

  • Osorio F, Paula GA, Galea M (2009) On estimation and influence diagnostics for the Grubbs’ model under heavy-tailed distributions. Comput Stat Data Anal 53:1249–1263

    Article  MATH  MathSciNet  Google Scholar 

  • Zeller CB, Lachos VH, Vilca-Labra FE (2011) Local influence analysis for regression models with scale mixtures of skew-normal distributions. J Appl Stat 38:343–368

    Article  MathSciNet  Google Scholar 

  • Zhu H, Lee S (2001) Local influence for incomplete-data models. J Royal Stat Soc Ser B 63:111–126

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank editor, associate editor and two referees whose constructive comments led to a much improved presentation. The research of Camila B. Zeller, Victor H. Lachos and Filidor Vilca Labra was supported by CNPq-Brazil, FAPESP-Brazil and FAPEMIG-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila B. Zeller.

Appendices

Appendix A: Elements of the Hessian matrix \(\ddot{Q}(\widehat{\varvec{\theta }})\)

$$\begin{aligned} \frac{\partial ^2 Q_{1i}\left( \varvec{\theta }_1,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \varvec{\alpha }\partial {\varvec{\alpha }}^{\top }}&= -\widehat{u}_i\mathbb{I }_{(p)} D^{-1}(\varvec{\phi })\mathbb{I }_{(p)}^{\top },\, \displaystyle \frac{\partial ^2 Q_{1i}\left( \varvec{\theta }_1,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \varvec{\phi }\partial {\varvec{\alpha }}^{\top }}\\&= \left( -\widehat{u}_iD(\mathbf y _i-\mathbf a )+\widehat{ux}_i\mathbf I _p\right) D^{-2}(\varvec{\phi })\mathbb{I }^{\top }_{(p)},\\ \frac{\partial ^2 Q_{1i}\left( \varvec{\theta }_1,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \varvec{\phi }\partial {\varvec{\phi }}^{\top }}&= \left[ \frac{1}{2}D(\varvec{\phi })-\widehat{u}_iD^2(\mathbf y _i-\mathbf a ) +2\widehat{ux}_iD(\mathbf y _i-\mathbf a )-\widehat{ux^2}_i\mathbf I _p\right] D^{-3}(\varvec{\phi }),\\ \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \mu _x \partial {\mu _x}}&= -\frac{1}{\nu _x^2}\widehat{u}_i,\,\, \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \mu _x \partial {\phi _x}} =\frac{\lambda _x\left( 1+\lambda _x^2\right) ^{1/2}}{2\phi _x^{3/2}}\widehat{ut}_i +\frac{\left( 1+{\lambda _x^2}\right) }{\phi _x^2}B_{1i},\\ \displaystyle \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \mu _x \partial {\lambda _x}}&= -\frac{2\lambda _x}{\phi _x}B_{1i}-\frac{\left( 1+2\lambda _x^2\right) }{\phi _x^{1/2}\left( 1+\lambda _x^2\right) ^{1/2}}\widehat{ut}_i,\\ \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \phi _x \partial {\phi _x}}&= \frac{1}{2\phi _x^2}-\frac{3\lambda _x \left( 1+\lambda _x^2\right) ^{1/2}}{4\phi _x^{5/2}} B_{2i} -\frac{\left( 1+\lambda _x^2\right) }{\phi _x^3}B_{3i},\\ \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \lambda _x \partial {\phi _x}}&= \frac{\left( 1+2\lambda _x^2\right) }{2\phi _x^{3/2}\left( 1+\lambda _x^2\right) ^{1/2}}B_{2i} +\frac{\lambda _x}{\phi _x^2}B_{3i},\\ \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \lambda _x \partial {\lambda _x}}&= \frac{\left( 1-\lambda _x^2\right) }{\left( 1+\lambda _x^2\right) ^2}-\frac{1}{\phi _x}B_{3i}-\widehat{ut^2}_i -\frac{\lambda _x\left( 3+2\lambda _x^2\right) }{\phi _x^{1/2}\left( 1+\lambda _x^2\right) ^{3/2}}B_{2i}, \end{aligned}$$

where \(B_{1i}=\widehat{u}_i\mu _x-\widehat{ux}_i\), \(B_{2i}=\widehat{ut}_i\mu _x-\widehat{utx}_i\) and \(B_{3i}=\widehat{ux^2}_i +\widehat{u}_i\mu _x^2-2\widehat{ux}_i\mu _x\).

Appendix B: Case weights perturbation

$$\begin{aligned} \frac{\partial ^2 Q_{1i}\left( \varvec{\theta }_1,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \varvec{\alpha }\partial {\omega _i}}&= \widehat{u}_i\mathbb{I }_{(p)}D^{-1}(\varvec{\phi })(\mathbf y _i-\mathbf a )-\widehat{ux}_i\mathbb{I }_{(p)}D^{-1}(\varvec{\phi })\mathbf 1 _p,\\ \frac{\partial ^2 Q_{1i}\left( \varvec{\theta }_1,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \varvec{\phi }\partial {\omega _i}}&= \frac{1}{2}\left[ \!-\!D(\varvec{\phi })\!+\!\widehat{u}_i D^2\left( \mathbf y _i\!-\!\mathbf a \right) \!-\!2\widehat{ux}_i D\left( \mathbf y _i\!-\!\mathbf a \right) \!+\!\widehat{ux^2}_i \mathbf I _p\right] D^{-2}(\varvec{\phi })\mathbf 1 _p,\\ \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \mu _x \partial {\omega _i}}&= -\frac{1}{\nu _x^2}\left( \widehat{u}_i\mu _x-\widehat{ux}_i+\widehat{ut}_i\tau _x\right) ,\\ \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \phi _x \partial {\omega _i}}&= -\frac{1}{2\phi _x}+\frac{\lambda _x\left( 1+\lambda _x^2\right) ^{1/2}}{2\phi _x^{3/2}}B_{2i}+\frac{1+\lambda _x^2}{2\phi _x^{2}}B_{3i},\\ \frac{\partial ^2 Q_{2i}\left( \varvec{\theta }_2,\varvec{\omega }_0|\widehat{\varvec{\theta }}\right) }{\partial \lambda _x \partial {\omega _i}}&= \frac{\lambda _x}{\left( 1+\lambda _x^2\right) }- \frac{\lambda _x}{\phi _x} B_{3i}-\lambda _x\widehat{ut^2}_i-\frac{\left( 1+2\lambda _x^2\right) }{\phi _x^{1/2}\left( 1+\lambda _x^2\right) ^{1/2}}B_{2i}. \end{aligned}$$

Appendix C: Moments of the latent variable \(x_i\)

For \(x_i \sim \text{ SMSN }(\mu _x,\phi _x,\lambda _x;H)\). Let \(\kappa _m=E\left[ \kappa ^{m/2}(U_i)\right] \), \(\tau _x=\phi _x^{1/2}\delta _x\) and \(\delta _x={\lambda _x}/{\sqrt{1+\lambda _x^2}}\). Then: (a) If \(\kappa _1<\infty \), \( E[x_i]= \mu _x+\sqrt{\frac{2}{\pi }} \kappa _1\tau _x\); (b) If \(\kappa _2<\infty \), \(Var[x_i]=\kappa _2\phi _x-\frac{2}{\pi }\kappa _1^2 \tau _x^2\). For special cases: (i) Normal and SN; \(\kappa _1=\kappa _2=1\); (ii) ST; \(\kappa _1=\frac{\Gamma \left( \frac{\nu -1}{2}\right) }{\Gamma (\frac{\nu }{2})},\nu >1\;\text{ and }\;\kappa _2=\frac{\nu }{\nu -2},\nu >2\); (iii) SSL: \(\kappa _1=\frac{2\nu }{2\nu -1}, \nu >1/2\;\text{ and }\;\kappa _2=\frac{\nu }{\nu -1},\nu >1\); (iv) SCN: \(\kappa _1=\frac{\nu }{\sqrt{\gamma }}+1-\nu \;\text{ and }\;\kappa _2=\frac{\nu }{\gamma }+1-\nu \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, C.B., Lachos, V.H. & Labra, F.V. Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions. Stat Papers 55, 671–690 (2014). https://doi.org/10.1007/s00362-013-0519-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-013-0519-9

Keywords

Navigation