Skip to main content
Log in

Nonlinear IV panel unit root testing under structural breaks in the error variance

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The paper examines the behavior of a generalized version of the nonlinear IV unit root test proposed by Chang (2002) when the series’ errors exhibit nonstationary volatility. The leading case of such nonstationary volatility concerns structural breaks in the error variance. We show that the generalized test is not robust to variance changes in general, and illustrate the extent of the resulting size distortions in finite samples. More importantly, we show that pivotality is recovered when using Eicker-White heteroskedasticity-consistent standard errors. This contrasts with the case of Dickey-Fuller unit root tests, for which Eicker-White standard errors do not produce robustness and thus require computationally costly corrections such as the (wild) bootstrap or estimation of the so-called variance profile. The pivotal versions of the generalized IV tests – with or without the correct standard errors – do however have no power in \(1/T\)-neighbourhoods of the null. We also study the validity of panel versions of the tests considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cavaliere G (2004) Unit root tests under time-varying variances. Econom Rev 23(3):259–292

    Article  MathSciNet  MATH  Google Scholar 

  • Cavaliere G, Taylor AMR (2007) Testing for unit roots in time series models with non-stationary volatility. J Econom 140(2):919–947

    Article  MathSciNet  MATH  Google Scholar 

  • Cavaliere G, Taylor AMR (2008a) Bootstrap unit root tests for time series with nonstationary volatility. Econom Theory 24(1):43–71

    Google Scholar 

  • Cavaliere G, Taylor AMR (2008b) Time-transformed unit root tests for models with non-stationary volatility. J Time Ser Anal 29(2):300–330

    Google Scholar 

  • Cavaliere G, Rahbek A, Taylor AMR (2010) Testing for co-integration in vector autoregressions with non-stationary volatility. J Econom 158(1):7–24

    Article  MathSciNet  Google Scholar 

  • Chang Y (2002) Nonlinear IV unit root tests in panels with cross-sectional dependency. J Econom 110(2):261–292

    Article  MATH  Google Scholar 

  • Chang Y, Song W (2009) Testing for unit roots in small panels with short-run and long-run cross-sectional dependencies. Rev Econ Stud 76(3):903–935

    Article  MathSciNet  MATH  Google Scholar 

  • Chang Y, Park JY, Phillips PCB (2001) Nonlinear econometric models with cointegrated and deterministically trending regressors. Econom J 4(1):1–36

    Article  MathSciNet  MATH  Google Scholar 

  • Clark TE (2009) Is the great moderation over? an empirical analysis. Econ Rev 4:5–42

    Google Scholar 

  • Demetrescu M (2009) Panel unit root testing with nonlinear instruments for infinite-order autoregressive processes. J Time Ser Econom 1(2):article 3.

  • Demetrescu M (2010) On the Dickey-Fuller test with white standard errors. Stat pap 51(1):11–25

    Article  MathSciNet  MATH  Google Scholar 

  • Demetrescu M, Hanck C (2011) IV estimators for autoregressive processes under nonstationary error volatility. mimeo.

  • Demetrescu M, Hanck C (2012) Unit root testing in heteroskedastic panels using the Cauchy estimator. J Bus Econ Stat 30:256–264

    Article  MathSciNet  Google Scholar 

  • Demetrescu M, Hanck C, Tarcolea AI (2011) IV-based cointegration testing in dependent panels with time-varying variance. Department of Economics, University of Bonn, Working paper

  • Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366):427–431

    Article  MathSciNet  MATH  Google Scholar 

  • Eicker F (1967) Limit theorems for regressions with unequal and dependent errors. In: Le Cam L, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 59–82

    Google Scholar 

  • Hanck C (2008) The error-in-rejection probability of meta analytic panel tests. Econ Lett 101:27–30

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen B (1992) Convergence to stochastic integrals for dependent heterogeneous processes. Econom Theory 8(4):489–500

    Article  Google Scholar 

  • Hausman J, Palmer C (2012) Heteroskedasticity-robust inference in finite samples. Econ Lett 116(2): 232–235

    Google Scholar 

  • de Jong R, Wang CH (2005) Further results on the asymptotics for nonlinear transformations of integrated time series. Econom Theory 21(2):413–430

    MATH  Google Scholar 

  • Kallianpur G, Robbins H (1953) Ergodic property of the Brownian motion process. Proc Natl Acad Sci USA 39(6):525–533

    Article  MathSciNet  MATH  Google Scholar 

  • Kline P, Santos A (2012) A score based approach to wild bootstrap inference. J Econom Methods 1:23–41

    Google Scholar 

  • Ling S, Li WK, McAleer M (2003) Estimation and testing for unit root processes with GARCH(1,1) errors: theory and monte carlo evidence. Econom Rev 22(2):179–202

    Article  MathSciNet  MATH  Google Scholar 

  • Moon HR, Perron B, Phillips PC (2007) Incidental trends and the power of panel unit root tests. J Econom 141:416–459

    Article  MathSciNet  Google Scholar 

  • Müller UK, Elliott G (2003) Tests for unit roots and the initial condition. Econometrica 71(4):1269–1286

    Article  MathSciNet  MATH  Google Scholar 

  • Park JY, Phillips PCB (1999) Asymptotics for nonlinear transformations of integrated time series. Econom Theory 15(3):269–298

    Article  MathSciNet  MATH  Google Scholar 

  • Perron P, Ng S (1996) Useful modifications to some unit root tests with dependent errors and their local asymptotic properties. Rev Econ Stud 63(3):435–463

    Article  MATH  Google Scholar 

  • Phillips PCB, Xu KL (2006) Inference in autoregression under heteroskedasticity. J Time Ser Anal 27(2):289–308

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips PCB, Park JY, Chang Y (2004) Nonlinear instrumental variable estimation of an autoregression. J Econom 118(1–2):219–246

    Article  MathSciNet  MATH  Google Scholar 

  • Sensier M, van Dijk D (2004) Testing for volatility changes in U.S. macroeconomic time series. Rev Econ Stat 86(3):833–839

    Article  Google Scholar 

  • So BS, Shin DW (1999a) Cauchy estimators for autoregressive processes with applications to unit root tests and confidence intervals. Econom Theory 15(2):165–176

    Google Scholar 

  • So BS, Shin DW (1999b) Recursive mean adjustment in time-series inferences. Stat Probab Lett 43(1): 65–73

    Google Scholar 

  • Stock JH, Watson MW (2002) Has the business cycle changed and why? NBER Macroeconom Annu 17(1):159–218

    Google Scholar 

  • Wang Q, Phillips P (2009) Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econom Theory 25(3):710–738

    Article  MathSciNet  MATH  Google Scholar 

  • White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817–838

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank an anonymous referee for comments that helped improve this manuscript. The second author, C. Hanck, would like to thank Walter Krämer for his valuable guidance throughout his career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hanck.

Appendices

Appendix

Let us first analyze the behavior of the cross-products involved in the expressions of the estimators and the test statistics. To this end, some limits and definitions are provided in the following.

Lemma 1

Under Assumptions 1, 2 and 3, it holds with \(\rho _{i}=1-\frac{c_{i}}{T}\) that

$$\begin{aligned} \frac{A_{i}\left(1\right)}{\overline{\omega }_{i}\sqrt{T}}\, y_{i\left[sT\right]}\Rightarrow J_{i,\eta _{i}}^{c_i}(s) \end{aligned}$$

marginally, for all \(1\le i \le N\).

Proof

See Cavaliere (2004).

For \(0\le \alpha <0.5,\) the asymptotic theory relies on the local time of Gaussian continuous-time processes. So let \(L_{i}\left(w,s\right)\) be the chronological local time of the limiting process \(J_{i,\eta _{i}}^{c_i}(s),\)

$$\begin{aligned} L_{i}\left(w,s\right)=\lim _{\epsilon \rightarrow 0}\frac{1}{2\epsilon }\int _{0}^{1}\mathbb I \left(\left|J_{i,\eta _{i}}^{c_i}(s)-w\right|<\epsilon \right)\text{ d}s \end{aligned}$$

with \(\mathbb I \left(\cdot \right)\) the indicator function), and denote by \(L_{i}^{*}\left(w,s\right)\) the local time of the time-transformed OU process in terms of its quadratic variation,

$$\begin{aligned} L_{i}^{*}\left(w,s\right)=\lim _{\epsilon \rightarrow 0}\frac{1}{2\epsilon }\int _{0}^{1}\mathbb I \left(\left|J_{i,\eta _{i}}^{c_i}(s)-w\right|<\epsilon \right)\text{ d}\eta _{i}\left(s\right). \end{aligned}$$

Note that the distribution of the latter is in general different from that of the chronological local time of \(J_{i,\eta _{i}}^{c_i}\), which ultimately implies that the IV t statistic with usual standard errors is not pivotal under nonstationary volatility; see the proof of Proposition 2.

We are now in the position to formulate the following

Lemma 2

Let \(f\left(s\right)\) be a continuous function with \(\int _{-\infty }^{\infty }\left|f\left(s\right)\right|\text{ d}s<\infty \) and \(\int _{-\infty }^{\infty }f\left(s\right)\text{ d}s\ne 0.\) Under Assumptions 1, 2 and 3, we have for \(\phi _{i}=-\frac{c_{i}}{T},\) \(c_{i}\ge 0,\) as \(T\rightarrow \infty \) that

  1. 1.
    $$\begin{aligned} \frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}f\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\overset{d}{\rightarrow } {\left\{ \begin{array}{ll} \frac{A_{i}\left(1\right)}{\overline{\omega }_{i}}\left(\int _{-\infty }^{\infty }f\left(s\right)\text{ d}s\right)L_{i}\left(0,1\right) \\ \quad \text{ for}\quad 0\le \alpha <0.5 \\ \int _{0}^{1}f\left(\frac{\overline{\omega }_{i}}{A_{i}\left(1\right)}J_{i,\eta _{i}}^{c_i}(s)\right)\text{ d}s \\ \quad \text{ for}\quad \alpha =0.5\end{array}\right.} \end{aligned}$$
  2. 2.
    $$\begin{aligned} \frac{1}{T^{0.75+\frac{\alpha }{2}}}\sum _{t=p+2}^{T}\Delta y_{i,t-j}f\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)=o_{p}\left(1\right) \end{aligned}$$

    for \(j=1,\ldots ,p\)

  3. 3.
    $$\begin{aligned} \frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\widehat{\varepsilon }_{i,t}^{2}\overset{d}{\rightarrow } {\left\{ \begin{array}{ll} A_{i}\left(1\right)\left(\int _{-\infty }^{\infty }F^{2}\left(s\right)\text{ d}s\right)L_{i}^{*}\left(0,1\right) \\ \quad \text{ for}\quad 0\le \alpha <0.5\ \overline{\omega }^{2} \\ \int _{0}^{1}F^{2}\left(\frac{\overline{\omega }_{i}}{A_{i}\left(1\right)}J_{i,\eta _{i}}^{c_i}(s)\right)\text{ d}\eta _{i}\left(s\right) \\ \quad \text{ for}\quad \alpha =0.5\end{array}\right.} \end{aligned}$$
  4. 4.
    $$\begin{aligned} \frac{1}{T^{0.25+\frac{\alpha }{2}}}\sum _{t=p+2}^{T}F\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\varepsilon _{i,t}\overset{d}{\rightarrow }{\left\{ \begin{array}{ll} \sqrt{A_{i}\left(1\right)\left(\int _{-\infty }^{\infty }F^{2}\left(s\right)\text{ d}s\right)L_{i}^{*}\left(0,1\right)}\cdot U_{i}\left(1\right) \\ \quad \text{ for}\quad 0\le \alpha <0.5 \\ \overline{\omega }\int _{0}^{1}F\left(\frac{\overline{\omega }_{i}}{A_{i}\left(1\right)}J_{i,\eta _{i}}^{c_i}(s)\right)\text{ d}W\left(\eta _{i}\left(s\right)\right) \\ \quad \text{ for}\quad \alpha =0.5,\end{array}\right.} \end{aligned}$$

where \(U_{i}(1)\sim \mathcal N (0,1)\) is independent of \(J_{i,\eta _{i}}^{c_i}\) and thus of \(L_{i}^{*}\left(0,1\right).\)

Note that \(F^{2}\left(s\right), sF\left(s\right), sF^{2}\left(s\right)\) and \(s^{2}F^{2}\left(s\right)\) all fulfill the assumptions of the lemma, so item 2 applies for \(F^{2}\left(T^{-\alpha }y_{i,t-1}\right),\) \(T^{-\alpha }y_{i,t-1}F\left(T^{-\alpha }y_{i,t-1}\right), T^{-\alpha }y_{i,t-1}F^{2}\) \(\left(T^{-\alpha }y_{i,t-1}\right)\) as well as \(T^{-2\alpha }y_{i,t-1}^{2}F\left(T^{-\alpha }y_{i,t-1}\right)\) leading to

$$\begin{aligned} \frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\overset{d}{\rightarrow }{\left\{ \begin{array}{ll} \frac{A_{i}\left(1\right)}{\overline{\omega }_{i}}\left(\int _{-\infty }^{\infty }F^{2}\left(s\right)\text{ d}s\right)L_{i}\left(0,1\right) \\ \quad \text{ for}\quad 0\le \alpha <0.5\ \\ \int _{0}^{1}F^{2}\left(\frac{\overline{\omega }_{i}}{A_{i}\left(1\right)}J_{i,\eta _{i}}^{c_i}(s)\right)\text{ d}s \\ \quad \text{ for}\quad \alpha =0.5\end{array}\right.}, \end{aligned}$$
$$\begin{aligned} \frac{1}{T^{0.5+2\alpha }}\sum _{t=p+2}^{T}y_{i,t-1}F\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\overset{d}{\rightarrow }{\left\{ \begin{array}{ll} \frac{A_{i}^{2}\left(1\right)}{\overline{\omega }_{i}^{2}}\left(\int _{-\infty }^{\infty }sF\left(s\right)\text{ d}s\right)L_{i}\left(0,1\right) \\ \quad \text{ for}\quad 0\le \alpha <0.5\ \\ \frac{\overline{\omega }_{i}}{A_{i}\left(1\right)}\int _{0}^{1}J_{i,\eta _{i}}^{c_i}(s)F\left(\frac{\overline{\omega }_{i}}{A_{i}\left(1\right)} J_{i,\eta _{i}}^{c_i}(s)\right)\text{ d}s \\ \quad \text{ for}\quad \alpha =0.5\end{array}\right.}, \end{aligned}$$
$$\begin{aligned} \frac{1}{T^{0.5+2\alpha }}\sum _{t=p+2}^{T}y_{i,t-1}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\overset{d}{\rightarrow }{\left\{ \begin{array}{ll} \frac{A_{i}^{2}\left(1\right)}{\overline{\omega }_{i}^{2}}\left(\int _{-\infty }^{\infty }sF^{2}\left(s\right)\text{ d}s\right)L_{i}\left(0,1\right) \\ \quad \text{ for}\quad 0\le \alpha <0.5\ \\ \frac{\overline{\omega }_{i}}{A_{i}\left(1\right)}\int _{0}^{1}J_{i,\eta _{i}}^{c_i}(s) F^{2}\left(\frac{\overline{\omega }_{i}}{A_{i}\left(1\right)}J_{i,\eta _{i}}^{c_i}(s) \right)\text{ d}s \\ \quad \text{ for}\quad \alpha =0.5\end{array}\right.}, \end{aligned}$$

and

$$\begin{aligned} \frac{1}{T^{0.5+3\alpha }}\sum _{t=p+2}^{T}y_{i,t-1}^{2}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\overset{d}{\rightarrow }{\left\{ \begin{array}{ll} \frac{A_{i}^{2}\left(1\right)}{\overline{\omega }_{i}^{2}}\left(\int _{-\infty }^{\infty }s^{2}F^{2}\left(s\right)\text{ d}s\right)L_{i}\left(0,1\right) \\ \quad \text{ for}\quad 0\le \alpha <0.5\ \\ \frac{\overline{\omega }_{i}^{2}}{A_{i}^{2}\left(1\right)}\int _{0}^{1}\left(J_{i,\eta _{i}}^{c_i}(s)\right)^{2}F^{2}\left(\frac{\overline{\omega }_{i}}{A_{i}\left(1\right)} J_{i,\eta _{i}}^{c_i}(s)\right)\text{ d}s \\ \quad \text{ for}\quad \alpha =0.5\end{array}\right.}. \end{aligned}$$

Moreover, item 2 applies just as well for \(T^{-0.75-\frac{\alpha }{2}}\sum _{t=p+2}^{T}\Delta y_{i,t-j}F\left(T^{-\alpha }y_{i,t-1}\right)\) and \(T^{-0.75-\frac{\alpha }{2}}\sum _{t=p+2}^{T}\Delta y_{i,t-j}F^{2}\left(T^{-\alpha }y_{i,t-1}\right),\) and also leads to

$$\begin{aligned} \frac{1}{T^{0.75+3\frac{\alpha }{2}}}\sum _{t=p+2}^{T}\Delta y_{i,t-j}y_{i,t-1}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)=o_{p}\left(1\right). \end{aligned}$$

Proof of Lemma 2

Let \(C\) be a generic positive constant.

  1. 1.

    For \(0\le \alpha <0.5,\) the result follows from Wang and Phillips (2009); see also Park and Phillips (1999), de Jong and Wang (2005). For \(\alpha =0.5,\) Lemma 1 and an application of the continuous mapping theorem lead to the desired limit.

  2. 2.

    For \(0\le \alpha <0.25,\) the proof is a straightforward extension of (Chang et al (2001), Lemma 5e) by picking their \(\delta \) such that \(\frac{1}{16}<\delta <\frac{1}{8}\). For \(0.25\le \alpha \le 0.5,\) write for \(h_{T}=C\, T^{\beta }\) with \(0<\beta <0.25\)

    $$\begin{aligned} \frac{1}{T^{0.75+\frac{\alpha }{2}}}\sum _{t=p+2}^{T}\Delta y_{i,t-j}f\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)&= \frac{1}{T^{0.75+\alpha /2}}\Biggl [\sum _{t=p+2}^{T}\Delta y_{i,t-j}f\left(\frac{y_{i,t-h_{T}}}{T^{\alpha }}\right)\\&\!+\!\sum _{t=p+2}^{T}\Delta y_{i,t-j}\left(f\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\!-\!f\left(\frac{y_{i,t-h_{T}}}{T^{\alpha }}\right)\right)\Biggr ]. \end{aligned}$$

    Using the Cauchy-Schwarz inequality,

    $$\begin{aligned}&\left|\frac{1}{T^{0.75+\frac{\alpha }{2}}}\sum _{t=p+2}^{T}\Delta y_{i,t-j}\left(f\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)-f\left(\frac{y_{i,t-h_{T}}}{T^{\alpha }}\right)\right)\right|\\&\qquad \le \sqrt{\widehat{\sigma }_{\Delta y}^{2}\frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}\left(f\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)-f\left(\frac{y_{i,t-h_{T}}}{T^{\alpha }}\right)\right)^{2}} \end{aligned}$$

    with \(\widehat{\sigma }_{\Delta y}^{2}\!\!=\!\!\frac{1}{T}\sum _{t=p+2}^{T}\left(\Delta y_{i,t-j}\right)^{2}\!\!=\!\!O_{p}\left(1\right).\) The boundedness of the derivative of \(f\left(\cdot \right)\) implies that \(\left|f\left(T^{-\alpha }y_{i,t-1}\right)\!\!-\!\!f\left(T^{-\alpha }y_{i,t-h_{T}}\right)\right|^{2}\!\le \! CT^{-2\alpha }\left|\sum _{j=t-h_{T}}^{t-1}\Delta y_{i,t-j}\right|^{2}\) so, noting that \(\sum _{j=t-h_{T}}^{t-1}\Delta y_{i,t-j}=O_{p}\bigl (h_{T}^{1/2}\bigr ),\) we obtain

    $$\begin{aligned} \frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}\left(f\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)-f\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\right)^{2}&= O_{p}\left(h_{T}T^{0.5-3\alpha }\right)\\&= O_{p}\left(T^{0.5+\beta -3\alpha }\right).\\&= o_{p}\left(1\right). \end{aligned}$$

    With \(\Delta y_{t-j}\) composed additively of a linear process with exponentially decaying coefficients and a negligible nonstationary component, we have that

    $$\begin{aligned} \Delta y_{i,t-j}f\left(\frac{y_{i,t-h_{T}}}{T^{\alpha }}\right)&= \sum _{k=0}^{h_{T}-j-1}b_{k}f\left(\frac{y_{i,t-h_{T}}}{T^{\alpha }}\right)\varepsilon _{t-k-j}\\&\quad +\,\sum _{k\ge h_{T}-j}b_{k}f\left(\frac{y_{i,t-h_{T}}}{T^{\alpha }}\right)\varepsilon _{t-k-j}+o_{p}\left(T^{-0.5}\right); \end{aligned}$$

    the first term on the r.h.s. is a linear combination of bounded-variance martingale differences, while the second has absolute expectation of order \(\sum _{k\ge h-j}\left|b_{k}\right|;\) rearranging the terms when summing over \(t\) leads to the desired result.

  3. 3.

    We have that

    $$\begin{aligned}&\frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\widehat{\varepsilon }_{i,t}^{2}=\frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\varepsilon _{i,t}^{2}\\&\quad \quad \quad -\frac{2}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\left(\widehat{\phi }_{i}^{iv}y_{i,t-1}+\sum _{j=1}^{p}\left(\widehat{a}_{ij}-a_{ij}\right)\Delta y_{i,t-j}\right)\\&\quad \quad \quad +\frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\left(\widehat{\phi }_{i}^{iv}y_{i,t-1}+\sum _{j=1}^{p}\left(\widehat{a}_{ij}-a_{ij}\right)\Delta y_{i,t-j}\right)^{2}. \end{aligned}$$

    Write for the first term on the r.h.s.

    $$\begin{aligned} \frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\varepsilon _{i,t}^{2}=\frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\sigma _{i,t}^{2}+o_{p}\left(1\right) \end{aligned}$$

    since \(F^{2}\left(y_{i,t-1}\right)\left(\varepsilon _{i,t}^{2}-\sigma _{i,t}^{2}\right)\) is by construction a martingale difference sequence so that \(\mathrm Var \left(T^{-0.5-\alpha }\sum _{t=p+2}^{T}F^{2}\left(T^{-\alpha }y_{i,t-1}\right)\left(\varepsilon _{i,t}^{2}-\sigma _{i,t}^{2}\right)\right)\) is given by

    $$\begin{aligned} \frac{1}{T^{1+2\alpha }}\sum _{t=p+2}^{T}\mathrm Var \left(F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\right)\mathrm Var \left(\left(\varepsilon _{i,t}^{2}-\sigma _{i,t}^{2}\right)\right) \end{aligned}$$

    Since \(y_{i,t-1}\!=\!O_p(T^{0.5})\) and using integrability of \(F\), we have \(\mathrm Var \left(F^{2}\left(T^{-\alpha }y_{i,t-1}\right)\right)\) \(\rightarrow 0\) for \(0\le \alpha <0.5\). For \(\alpha =0.5\), \(\frac{y_{i,t-1}}{T^{\alpha }}=O_p(1)\). Assumption 3 implies that \(F\) is bounded, whence \(\mathrm Var \left(F^{2}\left(T^{-0.5}y_{i,t-1}\right)\right)=O(1)\) such that

    $$\begin{aligned} \frac{1}{T^{2}}\sum _{t=p+2}^{T}\mathrm Var \left(F^{2}\left(\frac{y_{i,t-1}}{T^{0.5}}\right)\right)\mathrm Var \left(\left(\varepsilon _{i,t}^{2}-\sigma _{i,t}^{2}\right)\right)=O(T^{-1}). \end{aligned}$$

    For the second term, we have with Lemma 2 that

    $$\begin{aligned}&\frac{2\widehat{\phi }_{i}^{iv}}{T^{0.5+\alpha }} \sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)y_{i,t-1} \\&+\frac{2}{T^{0.5+\alpha }}\sum _{j=1}^{p}\left(\widehat{a}_{ij}-a_{ij}\right)\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\Delta y_{i,t-j} \end{aligned}$$

    is \(o_{p}\left(1\right)\), since \(\widehat{\phi }_{i}^{iv}=O_{p}\left(T^{-0.25-3\frac{\alpha }{2}}\right)\) and \(\widehat{a}_{ij}-a_{ij}=O_{p}\left(T^{-0.25}\right)\). Next, the Cauchy-Schwarz inequality implies that \(\sum _{t=p+2}^{T}F^{2}\left(T^{-\alpha }y_{i,t-1}\right)\left(\Delta y_{i,t-j}\right)^{2}=O_{p}\left(T^{0.75+\alpha }\right)\). Then, similar arguments apply for the third term. The result follows for \(0\le \alpha <0.5\) with

    $$\begin{aligned} \frac{1}{T^{0.5+\alpha }}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\sigma _{i,t}^{2}\overset{d}{\rightarrow }L_{i}^{*}\left(1,0\right), \end{aligned}$$
    (3)

    which is established with a tedious, yet straightforward adaptation of the arguments of Wang and Phillips (2009). For \(\alpha =0.5,\) the continuous mapping theorem delivers

    $$\begin{aligned} \frac{1}{T}\sum _{t=p+2}^{T}F^{2}\left(\frac{y_{i,t-1}}{\sqrt{T}}\right)\sigma _{i,t}^{2}\overset{d}{\rightarrow }\overline{\omega }_{i}^{2}\int _{0}^{1}F^{2}\left(\frac{\overline{\omega }_{i}}{A_{i}\left(1\right)} J_{i,\eta _{i}}^{c_i}(s)\right)\text{ d}\eta _{i}\left(s\right) \end{aligned}$$

    as required.

  4. 4.

    The result follows for \(0\le \alpha <0.5\) with Equation (3) and the arguments used by (Phillips et al (2004), Lemma 3.1); for \(\alpha =0.5,\) use Theorem 2.1 in Hansen (1992).

Proof of Proposition 1

With Lemma 2 item 2, the stationarity of \(\mathbf x _{t}\) and the md property of \(\mathbf x _{t-1}\varepsilon _{t}\), we obtain immediately that

$$\begin{aligned} A_{i,T}=\sum _{t=p+2}^{T}F\left(T^{-\alpha }y_{i,t-1}\right)\varepsilon _{i,t}+o_{p}\left(T^{0.25+{\alpha }/{2}}\right); \end{aligned}$$

with \(T^{-1}\sum _{t=p+2}^{T}\Delta y_{i,t-j}y_{i,t-1}=O_{p}\left(1\right)\) it follows that

$$\begin{aligned} B_{i,T}=\sum _{t=p+2}^{T}F\left(T^{-\alpha }y_{i,t-1}\right)y_{i,t-1}+o_{p}\left(T^{0.75+\alpha /2}\right). \end{aligned}$$

Since \(\sum _{t=p+2}^{T}F\left(T^{-\alpha }y_{i,t-1}\right)y_{i,t-1}\) is of exact order \(\Theta _{p}\left(T^{0.5+2\alpha }\right),\) \(B_{i,T}\) is at least of magnitude \(O_{p}\left(T^{0.5+2\alpha }\right),\) implying the desired convergence rate for \(\widehat{\phi }_{i}^{iv}.\) Similar arguments lead to the desired consistency of \(\widehat{\mathbf{a }}_{i}.\)

Proof of Proposition 2

We build on the behavior of \(A_{i,T}\) from the proof of Proposition 1 for \(c_{i}=0\). Note that

$$\begin{aligned} C_{i,T}=\sum _{t=p+2}^{T}F^{2}\left(T^{-\alpha }y_{i,t-1}\right)\widehat{\varepsilon }_{i,t}^{2}+o_{p}\left(T^{0.5+\alpha }\right) \end{aligned}$$

Lemma 2 items 3 and 4 implies that \(C_{i,T}\) consistently estimates \(\mathrm Var (A_{i,T})\), which, since \(t_i^{rob}=A_{i,T}/\sqrt{C_{i,T}}\) under the null, completes the proof.

With usual standard errors, \(C_{i,T}\) reduces to \(\widehat{\sigma }_{i}^{2}\sum _{t=p+2}^{T}F^{2}\left(T^{-\alpha }y_{i,t-1}\right)+o_{p}\left(T^{0.5+\alpha }\right)\) which, properly normalized, has the wrong weak limit, and the resulting t statistic is not pivotal even if \(0\le \alpha <0.5;\) for \(\alpha =0.5,\) it is straightforward to check that the limit is indeed the same if using Eicker-White or usual standard errors, but the resulting distribution depends on \(\eta _{i}\left(s\right)\).

Proof of Proposition 3

Using Lemma 2, we obtain that

$$\begin{aligned} \frac{A_{i,T}}{T^{0.25+\frac{\alpha }{2}}}&= \frac{1}{T^{0.25+\frac{\alpha }{2}}}\sum _{t=p+2}^{T}F\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)\varepsilon _{i,t}\\&\quad -\,\frac{A_{i}\left(1\right)c_{i}}{T^{1.25+\frac{\alpha }{2}}}\sum _{t=p+2}^{T}y_{i,t-1}F\left(\frac{y_{i,t-1}}{T^{\alpha }}\right)+o_{p}\left(T^{0.25+\frac{\alpha }{2}}\right); \end{aligned}$$

the second term on the r.h.s. is of exact order of magnitude \(\Theta _{p}\left(T^{-0.75+3\frac{\alpha }{2}}\right)\) and has a nondegenerate limit only for \(\alpha =0.5.\) The result follows analogously to the proof of Proposition 2 with

$$\begin{aligned} C_{i,T}=\sum _{t=p+2}^{T}F^{2}\left(T^{-\alpha }y_{i,t-1}\right)\widehat{\varepsilon }_{i,t}^{2}+o_{p}\left(T^{0.5+\alpha }\right) \end{aligned}$$

and Lemma 2 items 3 and 4.

Proof of Proposition 4

Use a Taylor expansion, \(F\left(T^{-\alpha }y_{i,t-1}\right)=F^{\prime }\left(0\right)\cdot T^{-\alpha }y_{i,t-1}+o_{p}\left(T^{-2\alpha }\right)\); the result follows in a straightforward manner.

Proof of Proposition 5

Considering the arguments of the proof of Proposition 3 in Demetrescu et al (2011), we only need to show that

$$\begin{aligned} \int _{\text{0}}^{1}F_{1}\left(\frac{\sqrt{T}}{T^{\alpha }}B_{1}\left(s\right)\right)F_{2}\left(\frac{\sqrt{T}}{T^{\alpha }}B_{2}\left(s\right)\right)\text{ d}s=o_{p}\left(\frac{1}{\sqrt{T}}\right) \end{aligned}$$
(4)

where \(B_{i}\) are two independent, standard Wiener processes. The invariance properties of Wiener processes lead immediately to

$$\begin{aligned} \int _{\text{0}}^{1}F_{1}\left(\frac{\sqrt{T}}{T^{\alpha }}B_{1}\left(s\right)\right)F_{2}\left(\frac{\sqrt{T}}{T^{\alpha }}B_{2}\left(s\right)\right)\text{ d}s \overset{d}{=}\int _{\text{0}}^{1}F_{1}\left(B_{1}\left(T^{1-2\alpha }s\right)\right)F_{2}\left(B_{2}\left(T^{1-2\alpha }s\right)\right)\text{ d}s \end{aligned}$$

with “\(\overset{d}{=}\)” standing for equivalence in distribution. Consider the change of variable \(t=T^{1-2\alpha }s\), leading to

$$\begin{aligned} \int _{\text{0}}^{1}F_{1}\left(\frac{\sqrt{T}}{T^{\alpha }}B_{1}\left(s\right)\right)F_{2}\left(\frac{\sqrt{T}}{T^{\alpha }}B_{2}\left(s\right)\right)\text{ d}s \overset{d}{=}\int _{\text{0}}^{\frac{1}{T^{1-2\alpha }}}F_{1}\left(B_{1}\left(t\right)\right)F_{2}\left(B_{2}\left(t\right)\right)\text{ d}t. \end{aligned}$$

To complete the proof, recall from Kallianpur and Robbins (1953) that the integral on the r.h.s. is of order \(O_{p}\left(T^{-1+2\alpha }\log T^{1-2\alpha }\right)=O_{p}\left(T^{-1+2\alpha }\log T\right);\) the desired result (4) follows when \(\alpha <0.375.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demetrescu, M., Hanck, C. Nonlinear IV panel unit root testing under structural breaks in the error variance. Stat Papers 54, 1043–1066 (2013). https://doi.org/10.1007/s00362-013-0502-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-013-0502-5

Keywords

Navigation