Skip to main content
Log in

Detecting fuzzy periodic patterns in futures spreads

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper extends an optimal frequency domain test for the detection of synchronous patterns in multiple time series to the case of fuzzy patterns, which are not confined to single frequencies or narrow frequency bands. Applying this extension to corn futures with different delivery dates, we obtain significant results only for the spreads between the different contracts but not for the original contracts, which is an indication that spread trading has the advantage of increased predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abken PA (1989) An analysis of intra-market spreads in heating oil futures. J Futur Mark 9:77–86

    Google Scholar 

  • Dunis CL, Laws J, Evans B (2008) Trading futures spread portfolios: applications of higher order and recurrent networks. Eur J Finance 14:503–521

    Article  Google Scholar 

  • Girma PB, Paulson AS (1998) Seasonality in petroleum futures spreads. J Futur Mark 18:581–598

    Google Scholar 

  • Geweke J, Porter-Hudak S (1983) The estimation and application of long memory time series models. J Time Ser Anal 4:221–238

    Article  MATH  MathSciNet  Google Scholar 

  • Granger CWJ, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. J Time Ser Anal 1:15–29

    Article  MATH  MathSciNet  Google Scholar 

  • Hassler U, Scheithauer J (2011) Detecting changes from short to long memory. Stat Pap 52:847–870

    Article  MATH  MathSciNet  Google Scholar 

  • Hirschfeld D (1983) A fundamental overview of the energy futures market. J Futur Mark 3:75–100

    Google Scholar 

  • Hosking JRM (1981) Fractional differencing. Biometrika 68:165–176

    Article  MATH  MathSciNet  Google Scholar 

  • Meisel DV, Byrne RA, Kuba M, Mather J, Ploberger W, Reschenhofer E (2006) Contrasting activity patterns of two related octopus species, Octopus macropus and Octopus vulgaris. J Comp Psychol 120:191–197

    Article  Google Scholar 

  • Nouira L, Boutahar M, Marimoutou V (2009) The effect of tapering on the semiparametric estimators for nonstationary long memory processes. Stat Pap 50:225–248

    Article  MATH  MathSciNet  Google Scholar 

  • Ploberger W, Reschenhofer E (2010) Testing for cycles in multiple time series. J Time Ser Anal 31:427–434

    Article  MATH  MathSciNet  Google Scholar 

  • Sibbertsen P, Willert J (2012) Testing for a break in persistence under long-range dependencies and mean shifts. Stat Pap 53:357–370

    Article  MATH  MathSciNet  Google Scholar 

  • Siegel DR, Siegel DF (1990) Futures markets. The Dryden Press, Chicago

    Google Scholar 

  • Teweles RJ, Jones FJ (1987) The futures game: who wins? Who loses? Why?, 2nd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

The authors very much appreciate the referees’ comments, which substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Reschenhofer.

Appendix A

Appendix A

Under the additional assumption of normality, the statistics \(\hat{a}_h (j)\), \(\hat{b}_h (j)\), h=1,...,H, j=1,...,k are i.i.d. \(N(0,\underline{\sigma }^2)\) and the statistics

$$\begin{aligned} R_{h} ^{*} = \frac{{2\left\{ \tfrac{1}{{\sqrt{k} }}\sum \nolimits _{{j = 1}}^{k} \frac{{\hat{a}_{{h}} (j)}}{{\underline{\sigma } }} \right\} ^{2} + \left\{ \tfrac{1}{{\sqrt{k} }}\sum \nolimits _{{j = 1}}^{k} \frac{{\hat{b}_{{h}} (j)}}{{\underline{\sigma } }} \right\} ^{2}}}{2} \end{aligned}$$
(19)

are i.i.d. \(\chi ^{2}\)-variables with 2 degrees of freedom, hence

$$\begin{aligned} \frac{1}{\sqrt{H} }\sum \limits _{h=1}^H {\frac{(R_h^*-2)}{\sqrt{4} }} \rightarrow N(0,1). \end{aligned}$$
(20)

Theorem The test statistic \(T=\sum _{h=1}^H {R_h }\) has the same limiting distribution as the simpler statistic \(T^*=\sum _{h=1}^H {R_h^*}\) , i.e.,

$$\begin{aligned} \frac{1}{\sqrt{H} }\left( {\sum \limits _{h=1}^H {R_h -2H} }\right)\rightarrow N(0,4) \end{aligned}$$
(21)

Proof Using (14), we see that \(R_{h}\) can be written as

$$\begin{aligned} R_{h} = \frac{{2X_{2} (h)}}{{\tfrac{1}{{ k }}X_{2k} (h)}}, \end{aligned}$$
(22)

where \(X_2 (h)\) and \(X_{2k} (h)\) are \(\sigma ^{2}\)-variables with 2 and 2\(k\) degrees of freedom, respectively. We have

$$\begin{aligned} E\left( {R_{h} - R_{h} ^{*} } \right)^{2}&= E\left( {\frac{{2X_{2} (h)}}{{\tfrac{1}{{ k }}X_{{2k}} (h)}} - \frac{{2X_{2} (h)}}{2}} \right)^{2} \\&= 4EX_{2} ^{2} (h)\left( {\frac{k}{{X_{{2k}} (h)}} - \frac{1}{2}} \right)^{2} \\&\le 4\sqrt{EX_{2} ^{4} } \sqrt{E\left( {\frac{k}{{X_{{2k}} (h)}} - \frac{1}{2}} \right)^{4} } \\&= 4{\sqrt{2\left( {2 + 2} \right)\left( {2 + 4} \right)\left( {2 + 6} \right)}\sqrt{\frac{1}{{2^{k} \Gamma \left( k \right)}}\int \limits _{0}^{\infty } {\left( {\frac{k}{x} - \frac{1}{2}} \right)^{4} x^{{k - 1}} } e^{{ - \frac{x}{2}}} dx} } \\&\rightarrow 0, \\ \end{aligned}$$

because

$$\begin{aligned} \begin{array}{l} k^4\frac{1}{2^k\Gamma (k)}\int \limits _0^\infty {x^{k-5}e^{-\textstyle {x \over 2}}dx} =\frac{k^4}{2^4k(k-1)(k-2)(k-3)}\rightarrow \frac{1}{16}, \\ -4\frac{k^3}{2}\frac{1}{2^k\Gamma (k)}\int \limits _0^\infty {x^{k-4}e^{-\textstyle {x \over 2}}dx} =-2\frac{k^3}{2^3k(k-1)(k-2)} \rightarrow -\frac{1}{4}, \\ 6\frac{k^2}{2^2}\frac{1}{2^k\Gamma (k)}\int \limits _0^\infty {x^{k-3}e^{-\textstyle {x \over 2}}dx} =\frac{3}{2}\frac{k^2}{2^2k(k-1)} \rightarrow \frac{3}{8}, \\ -4\frac{k}{2^3}\frac{1}{2^k\Gamma (k)}\int \limits _0^\infty {x^{k-2}e^{-\textstyle {x \over 2}}dx} =-\frac{1}{2}\frac{k}{2k} =-\frac{1}{4}, \\ \frac{1}{2^4}\frac{1}{2^k\Gamma (k)}\int \limits _0^\infty {x^{k-1}e^{-\textstyle {x \over 2}}dx} =\frac{1}{16}. \\ \end{array} \end{aligned}$$

Thus,

$$\begin{aligned} E\left( {\frac{1}{\sqrt{H} }\sum \limits _{h=1}^H {( {R_h -2})-\frac{1}{\sqrt{H} }\sum \limits _{h=1}^H {(R_h^*-2)} } }\right)^2&=E \left( {\frac{1}{\sqrt{H} }\sum \limits _{h=1}^H {R_h -\frac{1}{\sqrt{H} }\sum \limits _{h=1}^H {R_h^*} } }\right)^2 \\&=\frac{1}{H}E\left( {\sum \limits _{h=1}^H {(R_h -R_h^*)} }\right)^2 \\&=\frac{1}{H} \sum \limits _{h=1}^H {E (R_h -R_h^*)^2} \rightarrow 0. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reschenhofer, E., Ploberger, W. & Lehecka, G.V. Detecting fuzzy periodic patterns in futures spreads. Stat Papers 55, 487–496 (2014). https://doi.org/10.1007/s00362-012-0493-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-012-0493-7

Keywords

Mathematical Subject Classification (2000)

Navigation