Skip to main content
Log in

Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Fishes endemic to the Qinghai–Tibetan Plateau are comparatively well adapted to aquatic environments with low oxygen partial pressures (hypoxia). Here, we cloned the complete cDNA of hemoglobin (Hb) α and β from the Tibetan schizothoracine fish Schizopygopsis pylzovi, and then investigated changes in Hb mRNA and protein levels in spleen, liver and kidney in response to hypoxia. We applied severe hypoxia (4 h at PO2 = 0.6 kPa) and moderate hypoxia (72 h at PO2 = 6.0 kPa) to adult S. pylzovi. Changes of Hb expression under hypoxia, together with the investigations of spleen somatic index, kidney somatic index and Hb concentration in circulation, suggest that the kidney may not only serve as the erythropoietic organ, but also act as the major blood reservoir in S. pylzovi. From this perspective, the transcriptional activity of Hb in S. pylzovi, as reflected in the kidney, was turned down quickly after the onset of severe hypoxia, while under moderate hypoxia the transcriptional activity of Hb showed upregulation for a short time, but then the transcriptional machinery was turned down slowly on prolonged exposure. Notably, the changes in Hb protein levels in spleen, liver and kidney in response to severe and moderate hypoxia were not in line with the changes in mRNA levels, which are related with the blood reservoir in the kidney. Tibetan schizothoracine fish, at least S. pylzovi, show a particular response of the transcription regulation of Hb to moderate hypoxia, which is different from that of other fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affonso EG, Polez VL, Correa CF, Mazon AF, Araujo MR, Moraes G, Rantin FT (2002) Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia. Comp Biochem Physiol C Toxicol Pharmacol 133:375–382

    Article  CAS  PubMed  Google Scholar 

  • Capossela KM, Brill RW, Fabrizio MC, Bushnell PG (2012) Metabolic and cardiorespiratory responses of summer flounder Paralichthys dentatus to hypoxia at two temperatures. J Fish Biol 81:1043–1058

    Article  CAS  PubMed  Google Scholar 

  • Catton WT (1951) Blood cell formation in certain teleost fish. Blood 6:39–60

    CAS  PubMed  Google Scholar 

  • Chao Y, Zhao LY, Li CZ, Xie BS, Shen ZX, Wang GJ, Wang ZG, Li C, Bai BQ, Zhang H, Qi DL (2012) cDNA cloning and expression analysis of MSTN gene from Schizopygopsis pylzovi. Zool Res 33:473–480

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Cao WY (2000) Schizothoracinae. In: Yue PQ (ed) Fauna Sinica, Osteichthyes, Cypriniformes III. Science Press, Beijing, pp 273–390

    Google Scholar 

  • Cossins AR, Crawford DL (2005) Fish as models for environmental genomics. Nat Rev Genet 6:324–333

    Article  CAS  PubMed  Google Scholar 

  • Cossins AR, Williams DR, Foulkes NS, Berenbrink M, Kipar A (2009) Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish. J Exp Biol 212:627–638

    Article  CAS  PubMed  Google Scholar 

  • Fraser J et al (2006) Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci USA 103:2977–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardison R (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol 201:1099–1117

    CAS  PubMed  Google Scholar 

  • Homechaudhuri S, Jah A (2001) A technique to evaluate the erythropoietic efficiency in fish. Asian Fish Sci 14:453–455

    Google Scholar 

  • Houston AH, Murad A (1992) Erythrodynamics in goldfish, Carassius auratus L.: temperature effects. Physiol Zool 65:55–76

    Article  Google Scholar 

  • Houston AH, Roberts WC, Kennington JA (1996) Hematological response in fish: pronephric and splenic involvements in the goldfish, Carassius auratus L. Fish Physiol Biochem 15:481–489

    Article  CAS  PubMed  Google Scholar 

  • Kondera E (2011) Haematopoiesis in the head kidney of common carp (Cyprinus carpio L.): a morphological study. Fish Physiol Biochem 37:355–362

    Article  CAS  PubMed  Google Scholar 

  • Lai JC, Kakuta I, Mok HO, Rummer JL, Randall D (2006) Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen. J Exp Biol 209:2734–2738

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang S, Jiang G, Yang D, Lian J, Yang Y (2004) The development of the lymphoid organs of flounder, Paralichthys olivaceus, from hatching to 13 months. Fish Shellfish Immunol 16:621–632

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mandic M, Todgham AE, Richards JG (2009) Mechanisms and evolution of hypoxia tolerance in fish. Proc Biol Sci 276:735–744

    Article  CAS  PubMed  Google Scholar 

  • Murad A, Everill S, Houston A (1993) Division of goldfish erythrocytes in circulation. Can J Zool 71:2190–2198

    Article  Google Scholar 

  • Nikinmaa M (2001) Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia. Respir Physiol 128:317–329

    Article  CAS  PubMed  Google Scholar 

  • Nikinmaa M (2002) Oxygen-dependent cellular functions—why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol A Mol Integr Physiol 133:1–16

    Article  PubMed  Google Scholar 

  • Nikinmaa M, Rees BB (2005) Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol 288:R1079–R1090

    Article  CAS  PubMed  Google Scholar 

  • Nilsson GE (2007) Gill remodeling in fish—a new fashion or an ancient secret? J Exp Biol 210:2403–2409

    Article  PubMed  Google Scholar 

  • Patel S et al (2009) Ontogeny of lymphoid organs and development of IgM-bearing cells in Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol 26:385–395

    Article  CAS  PubMed  Google Scholar 

  • Person Le Ruyet J, Boeuf G, Zambonino Infante J, Helgason S, Le Roux A (1998) Short-term physiological changes in turbot and seabream juveniles exposed to exogenous ammonia. Comp Biochem Physiol A Mol Integr Physiol 119:511–518

    Article  CAS  PubMed  Google Scholar 

  • Qi D, Chao Y, Guo S, Zhao L, Li T, Wei F, Zhao X (2012) Convergent, parallel and correlated evolution of trophic morphologies in the subfamily schizothoracinae from the Qinghai–Tibetan plateau. PLoS One 7:e34070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesner A, Hankeln T, Burmester T (2006) Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol 209:2129–2137

    Article  CAS  PubMed  Google Scholar 

  • Roesner A, Mitz SA, Hankeln T, Burmester T (2008) Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J 275:3633–3643

    Article  CAS  PubMed  Google Scholar 

  • Rombout JH, Huttenhuis HB, Picchietti S, Scapigliati G (2005) Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol 19:441–455

    Article  CAS  PubMed  Google Scholar 

  • Shang EH, Wu RS (2004) Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ Sci Technol 38:4763–4767

    Article  CAS  PubMed  Google Scholar 

  • Smith RW, Houlihan DF, Nilsson GE, Brechin JG (1996) Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. Am J Physiol 271:R897–R904

    CAS  PubMed  Google Scholar 

  • Soldatov AA (1996) The effect of hypoxia on red blood cells of flounder: a morphologic and autoradiographic study. J Fish Biol 48:321–328

    Article  Google Scholar 

  • Sollid J, Nilsson GE (2006) Plasticity of respiratory structures—adaptive remodeling of fish gills induced by ambient oxygen and temperature. Respir Physiol Neurobiol 154:241–251

    Article  CAS  PubMed  Google Scholar 

  • Sollid J, De Angelis P, Gundersen K, Nilsson GE (2003) Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J Exp Biol 206:3667–3673

    Article  PubMed  Google Scholar 

  • Sollid J, Weber RE, Nilsson GE (2005) Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. J Exp Biol 208:1109–1116

    Article  PubMed  Google Scholar 

  • Storz JF, Scott GR, Cheviron ZA (2010) Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol 213:4125–4136

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Kajita A, Hanaoka C (1973) Improved method for preparation of crystalline oxyhemoglobin free from catalase and methemoglobin. J Biochem 41:401–408

    Google Scholar 

  • Timmerman CM, Chapman LJ (2004) Behavioral and physiological compensation for chronic hypoxia in the sailfin molly (Poecilia latipinna). Physiol Biochem Zool 77:601–610

    Article  PubMed  Google Scholar 

  • Ton C, Stamatiou D, Liew CC (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genom 13:97–106

    Article  CAS  Google Scholar 

  • Tzaneva V, Bailey S, Perry SF (2011) The interactive effects of hypoxemia, hyperoxia, and temperature on the gill morphology of goldfish (Carassius auratus). Am J Physiol Regul Integr Comp Physiol 300:R1344–R1351

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela A, Silva V, Tarifeno E, Klempau A (2005) Effect of acute hypoxia in Trout (Oncorhynchus mykiss) on immature erythrocyte release and production of oxidative radicals. Fish Physiol Biochem 31:65–72

    Article  CAS  Google Scholar 

  • Wawrowski A, Gerlach F, Hankeln T, Burmester T (2011) Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. J Comp Physiol B 181:199–208

    Article  CAS  PubMed  Google Scholar 

  • Witeska M (2013) Erythrocytes in teleost fishes: a review. Zool Ecol 23:275–281

    Article  Google Scholar 

  • Wu YF, Wu CZ (1992) The fishes of the Qinghai–Xizang plateau. Science and Technology Press, Chengdu

    Google Scholar 

  • Wu RSS, Zhou BS, Randall DJ, Woo NYS, Lam PKS (2003) Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction. Environ Sci Techonol 37:1137–1141

    Article  CAS  Google Scholar 

  • Yang S et al (2015) Morphogenesis of blood cell lineages in Ya-fish (Schizothorax prenanti) Chinese. J Zool 50:231–242

    Google Scholar 

  • Yuan S, Zhu A, Jiang L, Chai X (2011) Observations on the developments of blood cells in Nibea japonica. J Fish China 35:1374–1380

    Google Scholar 

  • Zhao ZX et al (2014) Duplication and differentiation of common carp (Cyprinus carpio) myoglobin genes revealed by BAC analysis. Gene 548:210–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China [31460094]; and the Natural Science Foundation of Qinghai Science & Technology Department in China [2015-ZJ-901]. We would like to thank the native English speaking scientists of Elixigen Company (Huntington Beach, California) for editing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songchang Guo or Delin Qi.

Additional information

Communicated by H.V. Carey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Chao, Y., Jia, J. et al. Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi . J Comp Physiol B 186, 1033–1043 (2016). https://doi.org/10.1007/s00360-016-1013-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1013-1

Keywords

Navigation