Skip to main content
Log in

Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The Antarctic midge, Belgica antarctica, experiences sub-zero temperatures and desiccating conditions for much of the year, and in response to these environmental insults, larvae undergo rapid shifts in metabolism, mobilizing carbohydrate energy reserves to promote synthesis of low-molecular-mass osmoprotectants. In this study, we measured the expression of 11 metabolic genes in response to thermal and dehydration stress. During both heat and cold stress, we observed upregulation of phosphoenolpyruvate carboxykinase (pepck) and glycogen phosphorylase (gp) to support rapid glucose mobilization. In contrast, there was a general downregulation of pathways related to polyol, trehalose, and proline synthesis during both high- and low-temperature stress. Pepck was likewise upregulated in response to different types of dehydration stress; however, for many of the other genes, expression patterns depended on the nature of dehydration stress. Following fast dehydration, expression patterns were similar to those observed during thermal stress, i.e., upregulation of gp accompanied by downregulation of trehalose and proline synthetic genes. In contrast, gradual, prolonged dehydration (both at a constant temperature and in conjunction with chilling) promoted marked upregulation of genes responsible for trehalose and proline synthesis. On the whole, our data agree with known metabolic adaptations to stress in B. antarctica, although a few discrepancies between gene expression patterns and downstream metabolite contents point to fluxes that are not controlled at the level of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Russell S (2009) Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genomics 10:242

    Article  PubMed  Google Scholar 

  • Baust JG, Edwards JS (1979) Mechanisms of freezing tolerance in an antarctic midge, Belgica antarctica. Physiol Entomol 4:1–5

    Article  CAS  Google Scholar 

  • Baust JG, Lee RE (1981) Environmental “homeothermy” in an Antarctic insect. Antarct J US 15:170–172

    Google Scholar 

  • Baust JG, Lee RE (1983) Population differences in antifreeze cryoprotectant accumulation patterns in an Antarctic insect. Oikos 40:120–124

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  • Benoit JB (2010) Water management by dormant insects: comparisons between dehydration resistance during summer aestivation and winter diapause. In: Navas CACJE (ed) Aestivation: molecular and physiological aspects, pp 209–229

  • Benoit JB, Lopez-Martinez G, Michaud MR, Elnitsky MA, Lee RE, Denlinger DL (2007) Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica. J Insect Physiol 53:656–667

    Article  PubMed  CAS  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL (2009) Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comp Biochem Physiol A Mol Integr Physiol 152:518–523

    Article  PubMed  Google Scholar 

  • Chen QF, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol 207:3125–3129

    Article  PubMed  CAS  Google Scholar 

  • Clark MS, Thorne MAS, Purac J, Burns G, Hillyard G, Popovic ZD, Grubor-Lajsic G, Worland MR (2009) Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genomics 10:328

    Article  PubMed  Google Scholar 

  • Clegg JS (2001) Cryptobiosis—a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 128:613–624

    Article  PubMed  CAS  Google Scholar 

  • Costanzo JP, Lee RE, Lortz PH (1993) Glucose-concentration regulates freeze tolerance in the wood frog, Rana sylvatica. J Exp Biol 181:245–255

    PubMed  CAS  Google Scholar 

  • Duman JG, Wu DW, Xu L, Tursman D, Olsen TM (1991) Adaptations of insects to subzero temperatures. Q Rev Biol 66:387–410

    Article  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  PubMed  CAS  Google Scholar 

  • Elnitsky MA, Hayward SAL, Rinehart JP, Denlinger DL, Lee RE (2008) Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. J Exp Biol 211:524–530

    Article  PubMed  Google Scholar 

  • Feder ME, Walser JC (2005) The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol 18:901–910

    Article  PubMed  CAS  Google Scholar 

  • Gibbs AG, Chippindale AK, Rose MR (1997) Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol 200:1821–1832

    PubMed  CAS  Google Scholar 

  • Girardot F, Monnier V, Tricoire H (2004) Genome wide analysis of common and specific stress responses in adult Drosophila melanogaster. BMC Genomics 5:16

    Article  Google Scholar 

  • Goto SG, Philip BN, Teets NM, Kawarasaki Y, Lee RE, Denlinger DL (2011) Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica. J Insect Physiol 57:1106–1114

    Article  PubMed  CAS  Google Scholar 

  • Hanson RW, Reshef L (1997) Regulation of phosphoenolpyruvate carboxykinase (GTP) gene. Annu Rev Biochem 66:581–611

    Article  PubMed  CAS  Google Scholar 

  • Joanisse DR, Storey KB (1994) Enzyme-activity profiles in an overwintering population of freeze-tolerant larvae of the gall fly, Eurosta solidaginis. J Comp Physiol B 164:247–255

    Article  CAS  Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment—a biogeographical synthesis. Arctic Alpine Res 25:308–315

    Article  Google Scholar 

  • Kikawada T, Saito A, Kanamori Y, Nakahara Y, Iwata KI, Tanaka D, Watanabe M, Okuda T (2007) Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci USA 104:11585–11590

    Article  PubMed  CAS  Google Scholar 

  • Kiss AJ, Muir TJ, Lee RE, Costanzo JP (2011) Seasonal variation in the hepatoproteome of the dehydration- and freeze-tolerant wood frog, Rana sylvatica. Int J Mol Sci 12:8406–8414

    Article  PubMed  CAS  Google Scholar 

  • Kostal V, Korbelova J, Rozsypal J, Zahradnickova H, Cimlova J, Tomcala A, Simek P (2011a) Long-term cold acclimation extends survival time at 0 degrees C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS One 6:10

    Google Scholar 

  • Kostal V, Zahradnickova H, Simek P (2011b) Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc Natl Acad Sci USA 108:13041–13046

    Article  PubMed  CAS  Google Scholar 

  • Kostal V, Simek P, Zahradnickova H, Cimlova J, Stetina T (2012) Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc Natl Acad Sci USA 109:3270–3274

    Article  PubMed  CAS  Google Scholar 

  • Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinforma 6:62

    Article  Google Scholar 

  • Lee RE (2011) A primer on insect cold tolerance. In: Denlinger DL, Lee RE Jr (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 3–34

    Google Scholar 

  • Lee RE, Elnitsky MA, Rinehart JP, Hayward SAL, Sandro LH, Denlinger DL (2006) Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J Exp Biol 209:399–406

    Article  PubMed  Google Scholar 

  • Liu GW, Roy J, Johnson EA (2006) Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiol Genomics 25:134–141

    Article  PubMed  Google Scholar 

  • Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE, Denlinger DL (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol 38:796–804

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Martinez G, Benoit JB, Rinehart JP, Elnitsky MA, Lee RE, Denlinger DL (2009) Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J Comp Physiol [B] 179:481–491

    Article  CAS  Google Scholar 

  • Michaud MR, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL (2008) Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J Insect Physiol 54:645–655

    Article  Google Scholar 

  • Misener SR, Chen CP, Walker VK (2001) Cold tolerance and proline metabolic gene expression in Drosophila melanogaster. J Insect Physiol 47:393–400

    Article  PubMed  CAS  Google Scholar 

  • Mitsumasu K, Kanamori Y, Fujita M, Iwata K, Tanaka D, Kikuta S, Watanabe M, Cornette R, Okuda T, Kikawada T (2010) Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki. FEBS J 277:4215–4228

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Malmendal A, Sorensen JG, Bundy JG, Loeschcke V, Nielsen NC, Holmstrup M (2007) Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. J Insect Physiol 53:1218–1232

    Article  PubMed  CAS  Google Scholar 

  • Ragland GJ, Denlinger DL, Hahn DA (2010) Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc Natl Acad Sci USA 107:14909–14914

    Article  PubMed  CAS  Google Scholar 

  • Ragland GJ, Egan SP, Feder JL, Berlocher SH, Hahn DA (2011) Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella. J Exp Biol 214:3948–3959

    Article  PubMed  Google Scholar 

  • Rinehart JP, Hayward SAL, Elnitsky MA, Sandro LH, Lee RE, Denlinger DL (2006) Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc Natl Acad Sci USA 103:14223–14227

    Article  PubMed  CAS  Google Scholar 

  • Ring RA, Danks HV (1994) Desiccation and cryoprotection—overlapping adaptations. Cryo Lett 15:181–190

    Google Scholar 

  • Sasaki H, Ichimura K, Oda M (1996) Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. Ann Bot 78:365–369

    Article  CAS  Google Scholar 

  • Sorensen JG, Nielsen MM, Kruhoffer M, Justesen J, Loeschcke V (2005) Full genome gene expression analysis of the heat stress response, in Drosophila melanogaster. Cell Stress Chaperones 10:312–328

    Article  PubMed  CAS  Google Scholar 

  • Storey KB (1997) Organic solutes in freezing tolerance. Comp Biochem Physiol A Physiol 117:319–326

    Article  PubMed  CAS  Google Scholar 

  • Storey KB, Storey JM (1991) Biochemistry of cryoprotectants. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman & Hall, New York, pp 64–93

    Chapter  Google Scholar 

  • Storey KB, Baust JG, Storey JM (1981) Intermediary metabolism during low-temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. J Comp Physiol 144:183–190

    CAS  Google Scholar 

  • Sugg P, Edwards JS, Baust J (1983) Phenology and life-history of Belgica antarctica, an Antarctic midge (Diptera, Chironomidae). Ecol Entomol 8:105–113

    Article  Google Scholar 

  • Teets NM, Kawarasaki Y, Lee RE, Denlinger DL (2011) Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae. J Exp Biol 214:806–814

    Article  PubMed  CAS  Google Scholar 

  • Teets NM, Kawarasaki Y, Lee RE, Denlinger DL (2012a) Energetic consequences of repeated and prolonged dehydration in the Antarctic midge, Belgica antarctica. J Insect Physiol 58:498–505

    Article  PubMed  CAS  Google Scholar 

  • Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, Denlinger DL (2012b) Uncovering molecular mechanisms of cold tolerance in a temperate flesh fly using a combined transcriptomic and metabolomic approach. Physiol Genomics 44:764–777

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  PubMed  CAS  Google Scholar 

  • Winston PW, Bates DS (1960) Saturated salt solutions for the control of humidity in biological research. Ecology 41:232–237

    Article  Google Scholar 

  • Yi SX, Benoit JB, Elnitsky MA, Kaufmann N, Brodsky JL, Zeidel ML, Denlinger DL, Lee RE (2011) Function and immuno-localization of aquaporins in the Antarctic midge Belgica antarctica. J Insect Physiol 57:1096–1105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff at Palmer Station for their excellent support during our field season. We acknowledge Justin Peyton for his assistance with the Belgica genome data and for providing the Matlab script for qPCR analysis. We also thank Dr. Tom Teets for help preparing Fig. 1 and Kevin Stevenson for technical assistance with qPCR standard curves. This work was supported in part by NSF OPP-ANT-0837613 and ANT-0837559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas M. Teets.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teets, N.M., Kawarasaki, Y., Lee, R.E. et al. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica . J Comp Physiol B 183, 189–201 (2013). https://doi.org/10.1007/s00360-012-0707-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0707-2

Keywords

Navigation