Skip to main content

Advertisement

Log in

Thermosensation and longevity

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Temperature has profound effects on behavior and aging in both poikilotherms and homeotherms. To thrive under the ever fluctuating environmental temperatures, animals have evolved sophisticated mechanisms to sense and adapt to temperature changes. Animals sense temperature through various molecular thermosensors, such as thermosensitive transient receptor potential (TRP) channels expressed in neurons, keratinocytes, and intestine. These evolutionarily conserved thermosensitive TRP channels feature distinct activation thresholds, thereby covering a wide spectrum of ambient temperature. Temperature changes trigger complex thermosensory behaviors. Due to the simplicity of the nervous system in model organisms such as Caenorhabditis elegans and Drosophila, the mechanisms of thermosensory behaviors in these species have been extensively studied at the circuit and molecular levels. While much is known about temperature regulation of behavior, it remains largely unclear how temperature affects aging. Recent studies in C. elegans demonstrate that temperature modulation of longevity is not simply a passive thermodynamic phenomenon as suggested by the rate-of-living theory, but rather a process that is actively regulated by genes, including those encoding thermosensitive TRP channels. In this review, we discuss our current understanding of thermosensation and its role in aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AC neurons:

Anterior cell neurons

BLSA:

Baltimore longitudinal study of aging

CGRP:

Calcitonin gene-related peptide

CSPs:

Cold-shock proteins

Dio2:

Type II iodothyronine deiodinase

DR:

Dietary restriction

DRG:

Dorsal root ganglia

HSF-1:

Heat shock factor-1

IGF1:

Insulin-like growth factor 1

IIS:

Insulin and insulin-like growth factor 1 signaling

MD neurons:

Multidendritic neurons

mTOR:

Mechanistic target of rapamycin

mTORC2:

mTOR complex 2

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PKC-2:

Protein kinase C-2

POA:

Preoptic area

SGK-1:

Serum-and glucocorticoid-inducible kinase-1

TG:

Trigeminal ganglia

TRP:

Transient receptor potential

TRPC:

TRP-canonical

TRPV:

TRP-vanilloid

TRPM:

TRP-melastatin

TRPN:

TRP-NompC

TRPA:

TRP-ankyrin

TRPP:

TRP-polycystin

TRPML:

TRP-mucoLipin

UCP1:

Uncoupling protein 1

References

  • Alcedo J, Kenyon C (2004) Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41:45–55

    Article  CAS  PubMed  Google Scholar 

  • Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:804–809

    Article  CAS  PubMed  Google Scholar 

  • Bargmann CI (2006) Chemosensation in C. elegans. In: The C. elegans Research Community (ed) WormBook (October 25, 2006). pp 1–29. doi:10.1895/wormbook.1.123.1

  • Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844

    Article  CAS  PubMed  Google Scholar 

  • Bounoutas A, Chalfie M (2007) Touch sensitivity in Caenorhabditis elegans. Pflugers Arch 454:691–702

    Article  CAS  PubMed  Google Scholar 

  • Cabanac M (1975) Temperature regulation. Annu Rev Physiol 37:415–439

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ (2007) Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 292:R64–R76

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ (2014) TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation. ACS Chem Neurosci 5(11):1107–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Chatzigeorgiou M, Schafer WR (2011) Lateral facilitation between primary mechanosensory neurons controls nose touch perception in C. elegans. Neuron 70:299–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatzigeorgiou M et al (2010) Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat Neurosci 13:861–868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chowdhury S, Jarecki BW, Chanda B (2014) A molecular framework for temperature-dependent gating of ion channels. Cell 158:1148–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapham DE, Miller C (2011) A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc Natl Acad Sci USA 108:19492–19497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke A, Portner HO (2010) Temperature, metabolic power and the evolution of endothermy. Biol Rev Camb Philos Soc 85:703–727

    PubMed  Google Scholar 

  • Conti B (2008) Considerations on temperature, longevity and aging. Cell Mol Life Sci 65:1626–1630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conti B et al (2006) Transgenic mice with a reduced core body temperature have an increased life span. Science 314:825–828

    Article  CAS  PubMed  Google Scholar 

  • Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  CAS  PubMed  Google Scholar 

  • Dhaka A, Earley TJ, Watson J, Patapoutian A (2008) Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 28:566–575

    Article  CAS  PubMed  Google Scholar 

  • Diller KR, Zhu L (2009) Hypothermia therapy for brain injury. Annu Rev Biomed Eng 11:135–162

    Article  CAS  PubMed  Google Scholar 

  • Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Human Genet 2:435–462

    Article  CAS  Google Scholar 

  • Fowler MA, Montell C (2013) Drosophila TRP channels and animal behavior. Life Sci 92:394–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frank DD, Jouandet GC, Kearney PJ, Macpherson LJ, Gallio M (2015) Temperature representation in the Drosophila brain. Nature 519:358–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallio M, Ofstad TA, Macpherson LJ, Wang JW, Zuker CS (2011) The coding of temperature in the Drosophila brain. Cell 144:614–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garrity PA, Goodman MB, Samuel AD, Sengupta P (2010) Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev 24:2365–2382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gates AC et al (2007) Respiratory uncoupling in skeletal muscle delays death and diminishes age-related disease. Cell Metab 6:497–505

    Article  CAS  PubMed  Google Scholar 

  • Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644

    Article  CAS  PubMed  Google Scholar 

  • Glauser DA et al (2011) Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics 188:91–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gracheva EO et al (2010) Molecular basis of infrared detection by snakes. Nature 464:1006–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gracheva EO et al (2011) Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476:88–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gurland BJ, Page WF, Plassman BL (2004) A twin study of the genetic contribution to age-related functional impairment. J Gerontol A 59:859–863

    Article  Google Scholar 

  • Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hauck SJ, Hunter WS, Danilovich N, Kopchick JJ, Bartke A (2001) Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp Biol Med 226:552–558

    CAS  Google Scholar 

  • Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 72:4061–4065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Human Genet 97:319–323

    Article  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Holloszy JO, Smith EK (1986) Longevity of cold-exposed rats: a reevaluation of the “rate-of-living theory”. J Appl Physiol 61:1656–1660

    CAS  PubMed  Google Scholar 

  • Horikawa M, Sural S, Hsu AL, Antebi A (2015) Co-chaperone p23 regulates C. elegans lifespan in response to temperature. PLoS Genet 11:e1005023

    Article  PubMed Central  PubMed  Google Scholar 

  • Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Hunter WS, Croson WB, Bartke A, Gentry MV, Meliska CJ (1999) Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol Behav 67:433–437

    Article  CAS  PubMed  Google Scholar 

  • Jabba S et al (2014) Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 82:1017–1031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong DE, Artan M, Seo K, Lee SJ (2012) Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging. Front Genet 3:218

    Article  PubMed Central  PubMed  Google Scholar 

  • Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13:487–492

    Article  CAS  PubMed  Google Scholar 

  • Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384

    Article  CAS  PubMed  Google Scholar 

  • Kahn-Kirby AH, Bargmann CI (2006) TRP channels in C. elegans. Annu Rev Physiol 68:719–736

    Article  CAS  PubMed  Google Scholar 

  • Kang K et al (2012) Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481:76–80

    Article  CAS  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y, Shim HS, Wang X, Montell C (2008) Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci 11:871–873

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y, Shen WL, Shim HS, Montell C (2010) Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons. J Neurosci 30:10465–10471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee BH, Ashrafi K (2008) A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan. PLoS Genet 4:e1000213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee SJ, Kenyon C (2009) Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr Biol 19:715–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee Y, Montell C (2013) Drosophila TRPA1 functions in temperature control of circadian rhythm in pacemaker neurons. J Neurosci 33:6716–6725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee Y et al (2005) Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat Genet 37:305–310

    Article  CAS  PubMed  Google Scholar 

  • Li W, Feng Z, Sternberg PW, Xu XZS (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440:684–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115:489–502

    Article  CAS  PubMed  Google Scholar 

  • Linford NJ, Kuo TH, Chan TP, Pletcher SD (2011) Sensory perception and aging in model systems: from the outside. Annu Rev Cell Dev Biol 27:759–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lints FA (1989) The rate of living theory revisited. Gerontology 35:36–57

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Schulze E, Baumeister R (2012) Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans. PLoS One 7:e32360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu WW, Mazor O, Wilson RI (2015) Thermosensory processing in the Drosophila brain. Nature 519:353–357

    Article  CAS  PubMed  Google Scholar 

  • Loeb J (1908) Ueber den Temperaturkoeffizienten für die Lebensdauer kaltblütiger Thiere und über die Ursache des natürlichen Todes. Pflüger Arch 124:411–426

    Article  Google Scholar 

  • Loeb J, Northrop JH (1916) Is there a temperature coefficient for the duration of life? Proc Natl Acad Sci USA 2:456–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lotshaw DP (2007) Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 47:209–256

    Article  CAS  PubMed  Google Scholar 

  • Lu CY, Hsu CY (2015) Ambient temperature reduction extends lifespan via activating cellular degradation activity in an annual fish (Nothobranchius rachovii). Age 37:9775

    Article  CAS  Google Scholar 

  • Luo DG, Yue WW, Ala-Laurila P, Yau KW (2011) Activation of visual pigments by light and heat. Science 332:1307–1312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo L et al (2014) Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proc Natl Acad Sci USA 111:2776–2781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754

    Article  CAS  PubMed  Google Scholar 

  • McGhee JD (2007) The C. elegans intestine. In: The C. elegans Research Community (ed) WormBook (March 27, 2007), pp 1–36. doi:10.1895/wormbook.1.133.1

  • McKemy DD (2007) Temperature sensing across species. Pflugers Arch 454:777–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizunuma M, Neumann-Haefelin E, Moroz N, Li Y, Blackwell TK (2014) mTORC2-SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. Aging Cell 13:869–878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohammadi A, Byrne Rodgers J, Kotera I, Ryu WS (2013) Behavioral response of Caenorhabditis elegans to localized thermal stimuli. BMC Neurosci 14:66

    Article  PubMed Central  PubMed  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Mori I, Sasakura H, Kuhara A (2007) Worm thermotaxis: a model system for analyzing thermosensation and neural plasticity. Curr Opin Neurobiol 17:712–719

    Article  CAS  PubMed  Google Scholar 

  • Morrison SF, Madden CJ, Tupone D (2012) Central control of brown adipose tissue thermogenesis. Front Endocrinol 3(5):pii:00005

    Google Scholar 

  • Ni L et al (2013) A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature 500:580–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ostojic I, Boll W, Waterson MJ, Chan T, Chandra R, Pletcher SD, Alcedo J (2014) Positive and negative gustatory inputs affect Drosophila lifespan partly in parallel to dFOXO signaling. Proc Natl Acad Sci USA 111:8143–8148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peier AM et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  • Peretti D et al (2015) RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518:236–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Picard F, Guarente L (2005) Molecular links between aging and adipose tissue. Int J Obes 29(Suppl 1):S36–S39

    Article  CAS  Google Scholar 

  • Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320:811–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramot D, MacInnis BL, Goodman MB (2008) Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nat Neurosci 11:908–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  CAS  PubMed  Google Scholar 

  • Riera CE et al (2014) TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 157:1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA (2005) The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 19:419–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenzweig M, Kang K, Garrity PA (2008) Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc Natl Acad Sci USA 105:14668–14673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roth GS et al (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297:811

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Fukuta N, Shingai R, Tominaga M (2011) Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs. PLoS Genet 7:e1002041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Shen WL, Kwon Y, Adegbola AA, Luo J, Chess A, Montell C (2011) Function of rhodopsin in temperature discrimination in Drosophila. Science 331:1333–1336

    Article  CAS  PubMed  Google Scholar 

  • Story GM et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  • Sugi T, Nishida Y, Mori I (2011) Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nat Neurosci 14:984–992

    Article  CAS  PubMed  Google Scholar 

  • Tchkonia T et al (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timiras PS (2003) Physiological basis of aging and geriatrics, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Tracey WD Jr, Wilson RI, Laurent G, Benzer S (2003) Painless, a Drosophila gene essential for nociception. Cell 113:261–273

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viswanath V et al (2003) Opposite thermosensor in fruitfly and mouse. Nature 423:822–823

    Article  CAS  PubMed  Google Scholar 

  • Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15:573–589

    Article  CAS  PubMed  Google Scholar 

  • Ward A, Liu J, Feng Z, Xu XZ (2008) Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 11:916–922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waterson MJ, Chung BY, Harvanek ZM, Ostojic I, Alcedo J, Pletcher SD (2014) Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling. Proc Natl Acad Sci USA 111:8137–8142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 106:20405–20410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans R Soc Lond B 314:1–340

    Article  CAS  Google Scholar 

  • Wittenburg N, Baumeister R (1999) Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. Proc Natl Acad Sci USA 96:10477–10482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao R, Xu XZS (2009) Function and regulation of TRP family channels in C. elegans. Pflugers Arch 458:851–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, Xu XZ (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152:806–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang F, Zheng J (2014) High temperature sensitivity is intrinsic to voltage-gated potassium channels. Elife 3:e03255. doi:10.7554/eLife.03255

    PubMed Central  PubMed  Google Scholar 

  • Ye L et al (2013) Fat cells directly sense temperature to activate thermogenesis. Proc Natl Acad Sci USA 110:12480–12485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Xiao R, Ronan EA, He Y, Hsu AL, Liu J, Xu XZ (2015) Environmental temperature differentially modulates C. elegans longevity through a thermosensitive TRP channel. Cell Rep 11(9):1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Zhong L et al (2012) Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP channel. Cell Rep 1:43–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Adam Iliff and other lab members for comments. Rui Xiao is supported by an NIA T32 Training Grant (AG000114). Lab research is supported by grants from the NIH (X. Z. Shawn Xu) and the NSFC (31130028, 31225011, and 31420103909 to Jianfeng Liu), the Program of Introducing Talents of Discipline to Universities from the Ministry of Education of China (B08029 to Jianfeng Liu), and the Ministry of Science and Technology of China (2012CB51800 to Jianfeng Liu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Shawn Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, R., Liu, J. & Xu, X.Z.S. Thermosensation and longevity. J Comp Physiol A 201, 857–867 (2015). https://doi.org/10.1007/s00359-015-1021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1021-8

Keywords

Navigation