Skip to main content
Log in

Ambient temperature reduction extends lifespan via activating cellular degradation activity in an annual fish (Nothobranchius rachovii)

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Ambient temperature reduction (ATR) can extend the lifespan of organisms, but the underlying mechanism is poorly understood. In this study, cellular degradation activity was evaluated in the muscle of an annual fish (Nothobranchius rachovii) reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures. The results showed the following: (i) the activity of the 20S proteasome and the expression of polyubiquitin aggregates increased with ATR, whereas 20S proteasome expression did not change; (ii) the expression of microtubule-associated protein 1 light chain 3-II (LC3-II) increased with ATR; (iii) the expression of lysosome-associated membrane protein type 2a (Lamp 2a) increased with ATR, whereas the expression of the 70-kD heat shock cognate protein (Hsc 70) decreased with ATR; (iv) lysosome activity increased with ATR, whereas the expression of lysosome-associated membrane protein type 1 (Lamp 1) did not change with ATR; and (v) the expression of molecular target of rapamycin (mTOR) and phosphorylated mTOR (p-mTOR) as well as the p-mTOR/mTOR ratio did not change with ATR. These findings indicate that ATR activates cellular degradation activity, constituting part of the mechanism underlying the longevity-promoting effects of ATR in N. rachovii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATR:

Ambient temperature reduction

LC3-II:

Microtubule-associated protein 1 light chain 3-II

Lamp 2a:

Lysosome-associated membrane protein type 2a

Hsc 70:

70-kD heat shock cognate protein

Lamp 1:

Lysosome-associated membrane protein type 1

mTOR:

Molecular target of rapamycin

p-mTOR:

Phosphorylated mTOR

ROS:

Reactive oxygen species

CAT:

Catalase

GPx:

Glutathione peroxidase

Mn-SOD:

Manganese-superoxide dismutase

CMA:

Chaperone-mediated autophagy

References

  • Banno A, Goult BT, Lee H, Bate N, Critchley DR, Ginsberg MH (2012) Subcellular localization of talin is regulated by inter-domain interactions. J Biol Chem 287:13799–13812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernstein SL, Liu AMH, Hansen BC, Somiari RI (2000) Heat shock cognate-70 gene expression declines during normal aging of the primate retina. Invest Ophthalmol Vis Sci 41:2857–2862

    CAS  PubMed  Google Scholar 

  • Bonelli MA, Desenzani S, Cavallini G, Donati A, Romani AA, Bergamini E, Borghetti AF (2008) Low-level caloric restriction rescues proteasome activity and Hsc70 level in liver of aged rats. Biogerontology 9:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bulteau AL, Petropoulos I, Friguet B (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol 35:767–777

    Article  CAS  PubMed  Google Scholar 

  • Bulteau AL, Szweda LI, Friguet B (2002) Age-dependent decline in proteasome activity in the heart. Arch Biochem Biophys 397:298–304

    Article  CAS  PubMed  Google Scholar 

  • Caramés B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62:791–801

    Article  PubMed Central  PubMed  Google Scholar 

  • Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Dice JF (2000a) Regulation of Lamp2a levels in the lysosomal membrane. Traffic 1:570–583

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Dice JF (2000b) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275:31505–31513

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140

    Article  PubMed  Google Scholar 

  • Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X (2012) Age-related changes in the function of autophagy in rat kidneys. Age 34:329–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Del Roso A, Vittorini S, Cavallini G, Donati A, Gori Z, Masini M, Pollera M, Bergamini E (2003) Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp Gerontol 38:519–527

    Article  PubMed  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294:1102–1105

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Troya S, Pérez-Pérez MS, Florencio FJ, Crespo JL (2008) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4:1–15

    Article  Google Scholar 

  • Ferrington DA, Husom AD, Thompson LV (2005) Altered proteasome structure, function and oxidation in aged muscle. FASEB J 19:644–646

    CAS  PubMed  Google Scholar 

  • Galbadage T, Hartman PS (2008) Repeated temperature fluctuation extends the life span of Caenorhabditis elegans in a daf-16-dependent fashion. Mech Ageing Dev 129:507–514

    Article  CAS  PubMed  Google Scholar 

  • Gracey AY, Fraser EJ, Li W, Fang Y, Taylor RR, Rogers J, Brass A, Cossins AR (2004) Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proc Natl Acad Sci U S A 101:16970–16975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsieh YS, Hsu CY (2011) Honeybee trophocytes and fat cells as target cells for cellular senescence studies. Exp Gerontol 46:233–240

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Chan YP (2013) The use of honeybees reared in a thermostatic chamber for aging studies. Age 35:149–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsu CY, Chiu YC (2009) Ambient temperature influences aging in an annual fish (Nothobranchius rachovii). Aging Cell 8:726–737

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Chiu YC, Hsu WL, Chan YP (2008) Age-related markers assayed at different developmental stages of the annual fish Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 63:1267–1276

    Article  PubMed  Google Scholar 

  • Hsu CY, Chuang YL, Chan YP (2014) Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera). Exp Gerontol 50:128–136

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162

    Article  CAS  PubMed  Google Scholar 

  • Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC, Martinez-Vicente M, Cuervo AM (2007) Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 120:782–791

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  • Liu RK, Walford RL (1966) Increased growth and life-span with lowered ambient temperature in the annual fish, Cynolebia adloffi. Nature 212:1277–1278

    Article  Google Scholar 

  • Liu T, Daniels CK, Cao S (2012) Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 136:354–374

    Article  CAS  PubMed  Google Scholar 

  • Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12:842–846

    Article  CAS  PubMed  Google Scholar 

  • Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Vicente M, Sovak G, Cuervo AM (2005) Protein degradation and aging. Exp Gerontol 40:622–633

    Article  CAS  PubMed  Google Scholar 

  • Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254

    Article  CAS  PubMed  Google Scholar 

  • Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, Von Zglinicki T, Davies KJ (2000) Proteasome inhibition by lipofuscin/ceroid during post-mitotic aging of fibroblasts. FASEB J 14:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Shirasawa T, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6:600–606

    Article  CAS  PubMed  Google Scholar 

  • Tavernarakis N, Driscoll M (2002) Caloric restriction and lifespan: a role for protein turnover? Mech Aging Dev 123:215–229

    Article  CAS  PubMed  Google Scholar 

  • Unterluggauer H, Micutkova L, Lindner H, Sarg B, Hernebring M, Nystrom T, Jansen-Dürr P (2009) Identification of Hsc70 as target for AGE modification in senescent human fibroblasts. Biogerontology 10:299–309

    Article  CAS  PubMed  Google Scholar 

  • Valenzano DR, Terzibasi E, Cattaneo A, Domenici L, Cellerino A (2006) Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 5:275–278

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Chang Q, Wang Y, Su F, Zhang S (2014) Late-onset temperature reduction can retard the aging process in aged fish via a combined action of an anti-oxidant system and the insulin/insulin-like growth factor 1 signaling pathway. Rejuvenation Res 17:507–517

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5:59–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, Xu XZS (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152:806–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoon J, Kim KJ, Choi YW, Shin HS, Kim YH, Min J (2010) The dependence of enhanced lysosomal activity on the cellular aging of bovine aortic endothelial cells. Mol Cell Biochem 340:175–178

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14:959–965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng J, Mutcherson R, Helfand SL (2005) Calorie restriction delays lipid oxidative damage in Drosophila melanogaster. Aging Cell 4:209–216

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Cai G, Liu F, Fu B, Liu W, Hong Q, Ma Q, Peng Y, Wang J, Chen X (2009) Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging. Mech Aging Dev 130:700–708

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants NSC 99-2311-B-182-002-MY3, CMRPD1C0081, and CMRPD180353 from the Ministry of Science and Technology, Taiwan, and the Chang Gung Memorial Hospital, Linkou, Taiwan.

Conflict of interest

The authors have declared that there are no conflicts of interest in relation to the subject of this study.

Author contributions

CH conceived and designed the experiments, analyzed the data, and prepared the manuscript; CH and CL performed the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Yuan Hsu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, CY., Hsu, CY. Ambient temperature reduction extends lifespan via activating cellular degradation activity in an annual fish (Nothobranchius rachovii). AGE 37, 33 (2015). https://doi.org/10.1007/s11357-015-9775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9775-z

Keywords

Navigation