Skip to main content
Log in

A biomimetic bi-leaflet mitral prosthesis with enhanced physiological left ventricular swirl restorative capability

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Mechanical heart valve prostheses are often implanted in young patients due to their durability and long-term reliability. However, existing designs are known to induce elevated levels of blood damage and blood platelet activation. As a result, there is a need for patients to undergo chronic anti-coagulation treatment to prevent thrombosis, often resulting in bleeding complications. Furthermore, recent studies have suggested that the implantation of a mechanical prosthetic valve at the mitral position results in a significant alteration of the left ventricular flow field which may contribute to flow turbulence. This study proposes a bi-leaflet mechanical heart valve design (Bio-MHV) that mimics the geometry of a human mitral valve, with the aim of reducing turbulence levels in the left ventricle by replicating physiological flow patterns. An in vitro three-dimensional particle velocimetry imaging experiment was carried out to compare the hemodynamic performance of the Bio-MHV with that of the clinically established ATS valve. The Bio-MHV was found to replicate physiological left ventricular flow patterns and produced lower turbulence levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31(9):677–688. doi:10.1111/j.1525-1594.2007.00446.x

    Article  Google Scholar 

  • Alemu Y, Girdhar G, Xenos M, Sheriff J, Jesty J, Einav S, Bluestein D (2010) Design optimization of a mechanical heart valve for reducing valve thrombogenicity—a case study with ATS valve. ASAIO J 56(5):389–396. doi:10.1097/MAT.0b013e3181e65bf9

    Article  Google Scholar 

  • Cantwell BJ (1981) Organized motion in turbulent flow. Annu Rev Fluid Mech 13(1):457–515. doi:10.1146/annurev.fl.13.010181.002325

    Article  MathSciNet  Google Scholar 

  • Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19(6):067105. doi:10.1063/1.2743261

    Article  MATH  Google Scholar 

  • Faludi R, Szulik M, D’Hooge J, Herijgers P, Rademakers F, Pedrizzetti G, Voigt JU (2010) Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg 139(6):1501–1510. doi:10.1016/j.jtcvs.2009.07.060

    Article  Google Scholar 

  • Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36(2):276–297. doi:10.1007/s10439-007-9411-x

    Article  Google Scholar 

  • Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO (2006) Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci USA 103(16):6305–6308

    Article  Google Scholar 

  • Govindarajan V, Udaykumar HS, Chandran KB (2009) Flow dynamic comparison between recessed hinge and open pivot bi-leaflet heart valve designs. J Mech Med Biol 9(2):161–176. doi:10.1142/S0219519409002912

    Article  Google Scholar 

  • Grigioni M, Daniele C, D’Avenio G, Barbaro V (1999) A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J Biomech 32(10):1107–1112

    Article  Google Scholar 

  • Ikonomidis JS, Kratz JM, Crumbley AJ 3rd, Stroud MR, Bradley SM, Sade RM, Crawford FA Jr (2003) Twenty-year experience with the St Jude Medical mechanical valve prosthesis. J Thorac Cardiovasc Surg 126(6):2022–2031. doi:10.1016/j.jtcvs.2003.07.005

    Article  Google Scholar 

  • Jafri SM (2004) Periprocedural thromboprophylaxis in patients receiving chronic anticoagulation therapy. Am Heart J 147(1):3–15

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Kaneko T, Aranki S, Javed Q, McGurk S, Shekar P, Davidson M, Cohn L (2014) Mechanical versus bioprosthetic mitral valve replacement in patients <65 years old. J Thorac Cardiovasc Surg 147(1):117–126. doi:10.1016/j.jtcvs.2013.08.028

    Article  Google Scholar 

  • Leo HL, He Z, Ellis JT, Yoganathan AP (2002) Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. J Thorac Cardiovasc Surg 124(3):561–574

    Article  Google Scholar 

  • Li CP, Lo CW, Lu PC (2010) Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data. Ann Biomed Eng 38(3):903–916. doi:10.1007/s10439-009-9867-y

    Article  Google Scholar 

  • Li CP, Chen SF, Lo CW, Lu PC (2011) Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO J 57(3):188–196. doi:10.1097/MAT.0b013e318213f9c2

    Article  Google Scholar 

  • Moidl R, Simon P, Wolner E, Trial O-XPHV (2002) The On-X prosthetic heart valve at five years. Ann Thorac Surg 74(4):S1312–S1317

    Article  Google Scholar 

  • Nollert G, Miksch J, Kreuzer E, Reichart B (2003) Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J Thorac Cardiovasc Surg 126(4):965–968. doi:10.1016/S0022

    Article  Google Scholar 

  • Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95(10):108101

    Article  Google Scholar 

  • Pedrizzetti G, Domenichini F, Tonti G (2010) On the left ventricular vortex reversal after mitral valve replacement. Ann Biomed Eng 38(3):769–773. doi:10.1007/s10439-010-9928-2

    Article  Google Scholar 

  • Pedrizzetti G, La Canna G, Alfieri O, Tonti G (2014) The vortex-an early predictor of cardiovascular outcome? Nat Rev Cardiol 11(9):545–553

    Article  Google Scholar 

  • Pottebaum TS, Gharib M (2004) The pinch-off process in a starting buoyant plume. Exp Fluids 37(1):87–94. doi:10.1007/s00348-004-0788-0

    Article  Google Scholar 

  • Puskas J, Gerdisch M, Nichols D, Quinn R, Anderson C, Rhenman B, Investigators P (2014) Reduced anticoagulation after mechanical aortic valve replacement: interim results from the prospective randomized on-X valve anticoagulation clinical trial randomized food and drug administration investigational device exemption trial. J Thorac Cardiovasc Surg 147(4):1202–1210. doi:10.1016/j.jtcvs.2014.01.004

    Article  Google Scholar 

  • Quinlan NJ, Dooley PN (2007) Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann Biomed Eng 35(8):1347–1356. doi:10.1007/s10439-007-9308-8

    Article  Google Scholar 

  • Sezai A, Hata M, Niino T, Yoshitake I, Kasamaki Y, Hirayama A, Minami K (2010) Fifteen years of experience with ATS mechanical heart valve prostheses. J Thorac Cardiovasc Surg 139(6):1494–1500. doi:10.1016/j.jtcvs.2009.07.039

    Article  Google Scholar 

  • Sheng J, Meng H, Fox RO (2000) A large eddy PIV method for turbulence dissipation rate estimation. Chem Eng Sci 55(20):4423–4434. doi:10.1016/S0009-2509(00)00039-7

    Article  Google Scholar 

  • Simon HA, Leo HL, Carberry J, Yoganathan AP (2004) Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann Biomed Eng 32(12):1607–1617

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

    Article  Google Scholar 

  • Vukićević M, Fortini S, Querzoli G, Espa S, Pedrizzetti G (2012) Experimental study of an asymmetric heart valve prototype. Eur J Mech B Fluids 35:54–60. doi:10.1016/j.euromechflu.2012.01.014

    Article  Google Scholar 

  • Wang Q, Sun W (2013) Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 41(1):142–153. doi:10.1007/s10439-012-0620-6

    Article  Google Scholar 

  • Westaby S, Van Nooten G, Sharif H, Pillai R, Caes F (1996) Valve replacement with the ATS open pivot bileaflet prosthesis. Eur J Cardiothorac Surg 10(8):660–665

    Article  Google Scholar 

  • Yen JH, Chen SF, Chern MK, Lu PC (2014) The effect of turbulent viscous shear stress on red blood cell hemolysis. J Artif Organs 17(2):178–185. doi:10.1007/s10047-014-0755-3

    Article  Google Scholar 

  • Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D (2004) Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng 32(8):1058–1066

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of a grant from Biomedical Engineering Programme, Agency of Science, Technology and Research Singapore for this study. The authors thank Dr. Boyang Su and Dr. Foad Kabinejadian for their contribution and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Liang Leo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S.GD., Kim, S. & Leo, H.L. A biomimetic bi-leaflet mitral prosthesis with enhanced physiological left ventricular swirl restorative capability. Exp Fluids 57, 110 (2016). https://doi.org/10.1007/s00348-016-2195-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2195-8

Keywords

Navigation