Skip to main content
Log in

Experimental study of the dynamics of magneto-rheological fluid droplet impact

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The kinematics of a magneto-rheological fluid droplet impact on a smooth surface, subjected to external magnetic field, was studied theoretically and experimentally. A time-dependent one-dimensional model of the impact, as typified by the droplet top center point height kinematics is developed. A series of experiments were conducted in order to validate the theoretical model. The shape changes generated during the impact process were recorded using a digital high-speed camera. Our novel kinematical model based on a variable damping function shows very good agreement with the experimental data for a wide range of Mason and Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Acceleration

B :

Magnetic field

Ca:

Capillary number

\( D_{0} \) :

Droplet initial diameter

\( D_{\text{C}} \) :

Circle diameter of a contact line

\( D_{\text{M}}^{*} \) :

Dimensionless maximum spread factor

\( D_{\text{P}} \) :

Particles mean size diameter

\( F_{\sigma } \) :

Surface tension force vertical component

FPS:

Frame per second

Fr:

Froude Number (Eq. 3)

G :

Gravity constant

\( \hat{H} \) :

Normalized top center point \( \left( {\hat{H}(t) = H(t)/D_{0} } \right) \)

\( \hat{H}_{\infty } \) :

Normalized steady state minimum height

i :

Index

k :

Coefficients (Eq. 21)

Ma:

Mason number (Eq. 18)

MR:

Magneto-rheological

R 0 :

Impact radius

Re:

Reynolds number (Eq. 17)

\( \text{Re}^{0} \) :

Reynolds number at B = 0

RMS:

Root mean square

RSQ:

Square of the correlation coefficient

T :

Time

\( \hat{t} \) :

Non-dimensional time (Eq. 4)

V :

Droplet volume

V d :

Droplet velocity

V 0 :

Impact velocity

V S :

Settling velocity

W :

Droplet weight

We:

Weber number (Eq. 16)

X, Y, Z :

Cartesian coordinate system

\( \hat{Z} \) :

Non-dimensional longitudinal axis (Eq. 5)

\( \hat{Z}_{\text{CM}} \) :

Non-dimensional center-of-mass position

α:

Parameter

β:

Quadratic function (Eq. 14)

\( \dot{\gamma } \) :

Shear rate

\( \Upgamma \) :

Function (Eq. 21)

δ:

Parameter

ε:

Coefficient (Eq. 22)

η:

Shear apparent viscosity

ηF :

Magneto-rheological carrier fluid viscosity

κ i :

Damping function coefficients (Eqs. 8, 9)

λ:

Parameter

ΛC :

Variable damping function

Λ1, Λ2 :

Variable damping function components (Eq. 10)

ξ:

Geometrical shape factor

ρ:

Magneto-rheological fluid density

υ1, υ2 :

Coefficients (Eq. 19)

ρF :

Fluid carrier density

\( \rho_{S} \) :

Solid particle density

σ :

Surface tension

τ s :

Settling time constant \( \left( {\tau_{\text{s}} = {{D_{0} } \mathord{\left/ {\vphantom {{D_{0} } {V_{\text{S}} }}} \right. \kern-\nulldelimiterspace} {V_{\text{S}} }}} \right) \)

μ 0 :

Vacuum permeability

Φ:

Function correlating the normalized steady state minimum height with Reynolds number at B = 0 (Eq. 19)

Ψ:

Dumping function exponential parameter

ΨI :

Function (defined in Eq. 22)

References

  • Afkhami S, Tyler AJ, Renardy Y, Renardy M, St. Pierre TJ, Woodward RC, Riffle JS (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384

  • Aytouna M, Bartolo D, Wegdam G (2010) Impact dynamics of surfactant kaden drops: dynamic surface tension effects. Exp Fluid 48:49–57

    Article  Google Scholar 

  • Bashtovoi V, Kuzhir P, Reks A (2002) The impact between a magnetic fluid drop and a magnetic fluid surface. J Magn Magn Mater 252:280–282

    Article  Google Scholar 

  • Bennett T, Poulikakos D (1993) Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. J Mater Sci 28:963–970

    Article  Google Scholar 

  • Bergeron V (2003) Designing intelligent fluids for controlling spray applications. CR Physique 4:211–219

    Article  Google Scholar 

  • Bergeron V, Bonn D, Martin JY, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405:772–775

    Article  Google Scholar 

  • Bossisa G, Lacisb S, Meuniera A, Volkova O (2002) Magnetorheological fluids. J Magn Magn Mater 252:224–228

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Slow viscous flow past spheres, Chap. 3. In: Bubbles, drops, and particles. Academic Press, New-York, pp 30–68

  • Cooper-White JJ, Crooks RC, Boger DV (2002) A drop impact study of worm-like viscoelastic surfactant solutions. Colloid Surf A Physicochem Eng Aspects 210:105–123

    Article  Google Scholar 

  • Crooks R, Boger DV (2000) Influence of fluid elasticity on drops impacting on dry surfaces. J Rheol 44:973–996

    Article  Google Scholar 

  • Crooks R, Cooper-White JJ, Boger DV (2001) The role of dynamic surface tension and elasticity on the dynamic of drop impact. Chem Eng Sci 56:5575–5592

    Article  Google Scholar 

  • Dhiman R, Chandara S (2010) Rupture of thin films formed during droplet impact. Proc R Soc A 466:1229–1245

    Article  Google Scholar 

  • Drelich J, Fang Ch, White CL (2002) Measurement of interfacial tension in fluid/fluid systems. In: Hubbard AT (ed) Encyclopedia of surface and colloid science (invited). Marcel Dekker, Inc., New York, pp 3152–3166

    Google Scholar 

  • Fukai J, Zhao Z, Poulikakos D, Megaridis CM, Miyatake O (1993) Modeling of the deformation of a liquid droplet impinging upon a flat surface. Phys Fluids A 5:2588–2599

    Article  MATH  Google Scholar 

  • Fukai J, Shiiba Y, Yamamoto T, Miyatake O, Poulikakos D (1995) Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling. Phys Fluids 7:236–247

    Article  Google Scholar 

  • Gorodkin SR, Kordonski WI, Medvedeva EV, Novikova ZA, Shoreya AB, Jacobs SD (2000) A method and device for measurement of a sedimentation constant of magnetorheological fluids. Rev Sci Inst 71:2476–2480

    Article  Google Scholar 

  • Hans ML, Claus G (2007) Measurement modes of the response time of a magnetorheological fluid (MRF) for changing magnetic flux density. Rheol Acta 46:665–676

    Article  Google Scholar 

  • Jansen MPM (2005) Visualization of a MR-fluid MRF-132AD. Eindhoven University of Technology Report MT05.24, Eindhoven, 7 July 2005

  • Jones H (1971) Cooling, freezing and substrate impact of droplets formed by rotary atomization. J Phys D Appl Phys 4:1657–1660

    Article  Google Scholar 

  • Lita M, Han A, Resiga DS (2009) Characterization of sedimentation and high magnetic field flow behavior of some magnetorheological fluids. In: 11th conference on electrorheological fluids and magnetorheological suspensions, J Phys Conf Ser 149. doi:10.1088/1742-6596/149/1/012071

  • Liu J, Vu H, Yoon SS, Jepsen R, Aguilar G (2010) Splashing phenomena during liquid droplet impact. Atomization Sprays 20(4):297–310

    Article  Google Scholar 

  • Nigen S (2005) Experimental investigation of the impact of an (apparent) yield-stress material. Atomization Sprays 15(2005):103–117

    Article  Google Scholar 

  • Rahimi S, Weihs D (2009) Experimental investigation of magneto-rheological droplet impact on a smooth surface. J Magn Magn Mater 321(19):3178–3182

    Article  Google Scholar 

  • Rahimi S, Weihs D (2011) Gelled fuel simulant droplet impact onto a solid surface. Propellants Explos Pyrotech 36:273–281

    Article  Google Scholar 

  • Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12:61–93

    Article  Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluid 33:112–124

    Google Scholar 

  • Roisman IV (2004) Dynamics of inertia dominated binary drop collisions. Phys Fluids 16(9):3438–3449

    Article  MathSciNet  Google Scholar 

  • Roisman IV, Tropea C (2002) Impact of a drop onto a wetted wall: description of crown formation and propagation. J Fluid Mech 472:373–397

    Article  MathSciNet  MATH  Google Scholar 

  • Roisman IV, Prunet-Foch B, Tropea C, Vignes-Adler M (2002a) Multiple drop impact onto a dry solid substrate”. J Colloid Interf Sci 256:396–410

    Article  Google Scholar 

  • Roisman IV, Rioboo R, Tropea C (2002b) Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc R Soc Lond A 458:1411–1430

    Article  MATH  Google Scholar 

  • Roisman IV, Kristijan H, Tropea C (2006) Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys Fluids 18:102104

    Article  MathSciNet  Google Scholar 

  • Roisman IV, Berberovic E, Tropea C (2009) Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys Fluids 21:052103

    Article  Google Scholar 

  • Roisman IV, Weickgenannt CM, Lembach AN, Tropea C (2010) Drop impact close to a pore: experimental and numerical investigations. In: ILASS—Europe, 23rd annual conference on liquid atomization and spray systems, Brno, Czech Republic, Sept 2010

  • Scheller BL, Bousfield DW (1995) Newtonian drop impact with a solid surface. AIChE J 41:1357–1367

    Article  Google Scholar 

  • Sudo S, Hashimoto H, Ikeda A (1989) Measurements of the surface tension of a magnetic fluid and interfacial phenomena. JSME Int J 32:47–51

    Google Scholar 

  • Sudo S, Wakamatsu N, Ikohagi T, Nishiyama H, Ohaba M, Katagiri K (1999) Magnetic field effects in the impact of a magnetic fluid drop. J Magn Magn Mater 201:285–289

    Article  Google Scholar 

  • Sudo S, Funaoka M, Nishiyama H (2002a) Sequential impact of two magnetic fluid droplets on a paper surface. J Magn Magn Mater 252:283–286

    Article  Google Scholar 

  • Sudo S, Funaoka M, Nishiyama H, Katagiri K (2002b) The effect of target roughness on the impact phenomena of magnetic fluid drops. Energy Convers Manage 43:289–297

    Article  Google Scholar 

  • Thoroddsen ST (2002) The ejecta sheet generated by the impact of a drop. J Fluid Mech 451:373–381

    Article  MathSciNet  MATH  Google Scholar 

  • Weiss DA, Yarin AL (1999) Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J Fluid Mech 385:229–254

    Article  MATH  Google Scholar 

  • Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett. doi:10.1103/PhysRevLett.94.184505, http://arxiv.org/abs/physics/0501149v1

  • Xu L, Barcos L, Nagel SR (2007) Splashing of liquids: interplay of surface roughness with surrounding gas. Phys Rev E 76:066311

    Article  Google Scholar 

  • Yangsoo S, Chongyoup K (2009) Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers. J Non-Newton Fluid Mech 162:78–87

    Article  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Ann Rev Fluid Mech 38:159–192

    Article  MathSciNet  Google Scholar 

  • Yarin AL, Weiss DA (1995) Impact of drops on solid surfaces: self-similar capillary waves”, and splashing as a new type of kinematic discontinuity. J Fluid Mech 283:141–173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Weihs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi, S., Weihs, D. Experimental study of the dynamics of magneto-rheological fluid droplet impact. Exp Fluids 53, 1577–1589 (2012). https://doi.org/10.1007/s00348-012-1376-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1376-3

Keywords

Navigation