Skip to main content
Log in

A three-dimensional study of the glottal jet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This work builds upon the efforts to characterize the three-dimensional features of the glottal jet during vocal fold vibration. The study uses a Stereoscopic Particle Image Velocimetry setup on a self-oscillating physical model of the vocal folds with a uniform vocal tract. Time averages are documented and analyzed within the framework given by observations reported for jets exiting elongated nozzles. Phase averages are locked to the audio signal and used to obtain a volumetric reconstruction of the jet. From this reconstruction, the intra-cycle dynamics of the jet axis switching is disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agrawal A, Verma G (2011) Similarity analysis of planar and axisymmetric turbulent synthetic jets. Int J Heat Mass Transf 51:6194–6198

    Article  Google Scholar 

  • Becker S, Kniesburges S, Muller S, Delgado A, Link G, Kaltenbacher M, Dollinger M (2009) Flow-structure-acoustic interaction in a human voice model. J Acoust Soc Am 125(3):1351

    Article  Google Scholar 

  • Boersma P, Weenink D (2001) Praat, a system for doing phonetics by computer. Glot Int 5:341–345

    Google Scholar 

  • Cheing R, Chung JN (1988) Simulation of particle dispersion in a two dimensional mixing layer. AIChE J 34:946

    Article  Google Scholar 

  • Chisari NE, Artana G, Sciamarella D (2011) Vortex dipolar structures in a rigid model of the larynx at flow onset. Exp Fluids 50:397–406

    Article  Google Scholar 

  • Drechsel JS, Thomson SL (2008) Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model. J Acoust Soc Am 123(6):4434–4445

    Article  Google Scholar 

  • Erath BD, Plesniak MW (2010) An investigation of asymmetric flow features in a scaled-up driven model of the human vocal folds. Exp Fluids 49(1):131–146

    Article  Google Scholar 

  • Erath BD, Plesniak MW (2011) Impact of wall rotation on supraglottal jet stability in voiced speech. J Acoust Soc Am 129(3):EL64–EL70

    Article  Google Scholar 

  • Fuchs NA (1964) The mechanics of aerosols. Dover Publications Inc., New York

    Google Scholar 

  • Gilbert J, Ponthus S, Petiot JF (1998) Artificial buzzing lips and brass instruments: experimental results. J Acoust Soc Am 104(3):1627–1632

    Article  Google Scholar 

  • Gutmark EJ, Grinstein FF (1999) Flow control with noncircular jets. Ann Rev Fluid Mech 31:239–272

    Article  Google Scholar 

  • Ho CM, Gutmark E (1987) Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J Fluid Mech 179:383–405

    Article  Google Scholar 

  • Hollien H, Dew D, Philips P (1971) Phonational frequency ranges of adults. J Speech Hearing Res 14:755–760

    Google Scholar 

  • Hussain F, Husain HS (1989) Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J Fluid Mech 208:257–320

    Article  Google Scholar 

  • Khosla S, Muruguppan S, Gutmark E, Scherer R (2007) Vortical flow field during phonation in an excised canine larynx model. Ann Otol Rhinol Laryngol 116(3):217–228

    Google Scholar 

  • Khosla S, Muruguppan S, Gutmark E, Scherer R (2008) Using particle imaging velocimetry to measure anterior-posterior velocity gradients in the excised canine larynx model. Ann Otol Rhinol Laryngol 117(2):134–144

    Google Scholar 

  • Konrath R, Schroder W (2000) Stereoscopic particle-image velocimetry (piv) a new approach using telecentric lenses. 10th Intternational symposium on applications of laser techniques to fluid mechanics, pp 1–14

  • Krane M, Barry M, Wei T (2007) Unsteady behavior of flow in a scaled-up vocal folds model. J Acoust Soc Am 122(6):3659–3670

    Article  Google Scholar 

  • Krebs F, Artana G, Sciamarella D (2010) Glottal aperture modes and acoustic output in an in-vitro self-oscillating vocal fold model. 10eme Congrès Français d’Acoustique, p CFA2010/412

  • Krothapalli A, Baganoff D, Karamcheti K (1981) On the mixing of a rectangular jet. J Fluid Mech 107:201–220

    Article  Google Scholar 

  • Murugappan S, Gutmark EJ, Lakhamraju RR, Khosla S (2008) Flow-structure interaction effects on a jet emanating from a flexible nozzle. Phys Fluids 20(11):117105

    Article  Google Scholar 

  • Neubauer J, Zhang Z, Miraghaie R, Berry DA (2007) Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds. J Acoust Soc Am 121(2):1102–1118

    Article  Google Scholar 

  • Pelorson X, Hirschberg A, Hasselt RV, Wijnands A, Auregan Y (1994) Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model. J Acoust Soc Am 96(6):3416–3431

    Article  Google Scholar 

  • Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116

    Article  Google Scholar 

  • Quinn WR (2007) Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate. Euro J Mech B Fluids 26:583–614

    Article  MATH  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry. a practical guide. Springer, Berlin

    Google Scholar 

  • Ruty N, Pelorson X, Hirtum AV (2008) Influence of acoustic waveguides lengths on self-sustained oscillations: theoretical prediction and experimental validation. J Acoust Soc Am 123(5):3121

    Article  Google Scholar 

  • Ruty N, Pelorson X, Hirtum AV, Lopez-Arteaga I, Hirschberg A (2007) An in vitro setup to test the relevance and the accuracy of low-order vocal folds models. J Acoust Soc Am 121(1):479–490

    Article  Google Scholar 

  • Sciamarella D, Quéré PL (2008) Solving for unsteady airflow in a glottal model with immersed moving boundaries. Euro J Mech B Fluids 27(1):42–53

    Article  MATH  Google Scholar 

  • Sidlof P, Doare O, Cadot O, Chaigne A (2011) Measurement of flow separation in a human vocal folds model. Exp Fluids 51:123–136

    Article  Google Scholar 

  • Svec JG, Horacek J, Sram F, Vesely J (2000) Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. J Acoust Soc Am 108(4):1397

    Article  Google Scholar 

  • Titze IR, Liang H (1993) Comparison of high precision f0 extraction algorithms for sustained vowels. J Speech Hearing Res 36:1120–1133

    Google Scholar 

  • Triep M, Brucker C (2010) Three-dimensional nature of the glottal jet. J Acoust Soc Am 127(3):1537–1547

    Article  Google Scholar 

  • Triep M, Brucker C, Schroder W (2005) High-speed piv measurements of the flow downstream of a dynamic mechanical model of the human vocal folds. Exp Fluids 39:232–245

    Article  Google Scholar 

  • Vilain CE, Pelorson X, Hirschberg A, Marrec LL, Root WO, Willems J (2003) Contribution to the physical modeling of the lips. Influence of the mechanical boundary conditions. Acta Acustica United Acustica 89:882–887

    Google Scholar 

  • Yoon JH, Lee SJ (2003) Investigation of the near-field structure of an elliptic jet using stereoscopic particle image velocimetry. Meas Sci Technol 14:2034–2046

    Article  Google Scholar 

  • Zhang Z, Neubauer J (2010) On the acoustical relevance of supraglottal flow structures to low-frequency voice production. J Acoust Soc Am 128(6):EL378–EL383

    Article  Google Scholar 

Download references

Acknowledgments

This research has been performed with the support of the SticAmSud Program ‘Modeling Voice Production’, of the Bernardo Houssay Program and of the LIA PMF-FMF (Franco-Argentinian International Associated Laboratory in the Physics and Mechanics of Fluids). We wish to acknowledge the generosity of X. Pelorson concerning the experimental design of the vocal fold model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sciamarella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (1.08 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krebs, F., Silva, F., Sciamarella, D. et al. A three-dimensional study of the glottal jet. Exp Fluids 52, 1133–1147 (2012). https://doi.org/10.1007/s00348-011-1247-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1247-3

Keywords

Navigation