Skip to main content
Log in

Characteristics of the pulsating jet flow through a dynamic glottal model with a lens-like constriction

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

A computational study of the pulsating jet in a squared channel with a dynamic glottal-shaped constriction is presented. It follows the model experiments of Triep and Brücker (J Acoust Soc Am 127(2):1537–1547, 2010) with the cam-driven model that replicates the dynamic glottal motion in the process of human phonation. The boundary conditions are mapped from the model experiment onto the computational model and the three dimensional time resolved velocity and pressure fields are numerically calculated. This study aims to provide more details of flow separation and pressure distribution in the glottal gap and in the supraglottal flow field. Within the glottal gap a ‘vena contracta’ effect is generated in the mid-sagittal plane. The flow separation in the mid-coronal plane is therefore delayed to larger diffuser angles which leads to an ‘axis-switching’ effect from mid-sagittal to mid-coronal plane. The location of flow separation in mid-sagittal cross section moves up- and downwards along the vocal folds surface in streamwise direction. The generated jet shear layer forms a chain of coherent vortex structures within each glottal cycle. These vortices cause characteristic velocity and pressure fluctuations in the supraglottal region, that are in the range of 10–30 times of the fundamental frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhao W, Zhang C, Frankel SH, Mongeau L. Computational aeroacoustics of phonation, part I: computational methods and sound generation mechanisms. J Acoust Soc Am. 2002;112(5):2134–46.

    Article  Google Scholar 

  2. Krane M. Aeroacoustic production of low-frequency unvoiced speech sounds. J Acoust Soc Am. 2005;118:410–27.

    Article  Google Scholar 

  3. Howe MS, McGowan RS. Sound generated by aerodynamic sources near a deformable body, with application to voiced speech. J Fluid Mech. 2007;592:367–92.

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang Z, Mongeau L, Frankel SH, Thomson S, Park JB. Sound generation by steady flow through glottis-shaped orifices. J Acoust Soc Am. 2004;116:1720–8.

    Article  Google Scholar 

  5. Zhang Z, Mongeau L, Frankel SH, Thomson S, Park JB. Computational aeroacoustics of phonation, part II: effects of flow parameters and ventricular folds. J Acoust Soc Am. 2002;112(3):2147–53.

    Article  Google Scholar 

  6. McGowan RS, Howe MS. Source-tract interaction with prescribed vocal fold motion. J Acoust Soc Am. 2012;131(4):2999–3016.

    Article  Google Scholar 

  7. Howe MS, McGowan RS. Voicing produced by a constant velocity lung source. J Acoust Soc Am. 2013;133(4):2340–9.

    Article  Google Scholar 

  8. Sidlof P, Horacek J, Ridky V. Parallel CFD simulation of flow in a 3d model of vibrating human vocal folds. Comput Fluids. 2013;80:290–300.

    Article  MathSciNet  MATH  Google Scholar 

  9. Alipour F, Brücker C, Cook DD, Gömmel A, Kaltenbacher M, Mattheus W, Mongeau L, Nauman E, Schwarze R, Tokuda I, Zörner S. Mathematical models and numerical schemes for the simulation of human phonation. Curr Bioinform. 2011;6(3):323–43.

    Article  Google Scholar 

  10. Mittal R, Erath BD, Plesniak MW. Fluid dynamics of human phonation and speech. Annu Rev Fluid Mech. 2013;45(1):437–67.

    Article  MathSciNet  MATH  Google Scholar 

  11. Howe MS, McGowan RS. Aerodynamic sound of a body in arbitrary, deformable motion, with application to phonation. J Sound Vib. 2013;332(17):3909–23.

    Article  Google Scholar 

  12. Mattheus W, Brücker C. Asymmetric glottal jet deflection: differences of two- and three-dimensional models. J Acoust Soc Am. 2011;130(6):EL373–9.

    Article  Google Scholar 

  13. de Oliveira Rosa M, Pereira JC, Grellet M, Alwan A. A contribution to simulating a three-dimensional larynx model using the finite element method. J Acoust Soc Am. 2003;114(5):2893–905.

    Article  Google Scholar 

  14. Mihaescu M, Khosla SM, Murugappan S, Gutmark EJ. Unsteady laryngeal airflow simulations of the intra-glottal vortical structures. J Acoust Soc Am. 2010;127(1):435–44.

    Article  Google Scholar 

  15. Zheng X, Mittal R, Bielamowicz S. A computational study of asymmetric glottal jet deflection during phonation. J Acoust Soc Am. 2011;129(4):2133–42.

    Article  Google Scholar 

  16. Zheng X, Mittal R, Xue Q, Beilamowicz S. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model. J Acoust Soc Am. 2011;130(1):404–15.

    Article  Google Scholar 

  17. Triep M, Brücker C. Three-dimensional nature of the glottal jet. J Acoust Soc Am. 2010;127(2):1537–47.

    Article  Google Scholar 

  18. Triep M, Brücker C, Schröder W. High-speed piv measurements of the flow downstream of a dynamic mechanical model of the human vocal folds. Exp Fluids. 2005;39:232–45.

    Article  Google Scholar 

  19. Triep M, Brücker C, Stingl M, Döllinger M. Optimized transformation of the glottal motion into a mechanical model. Med Eng Phys. 2011;33(2):210–7.

    Article  Google Scholar 

  20. Kirmse C, Triep M, Brücker C, Döllinger M, Stingl M. Experimental flow study of modeled regular and irregular glottal closure types. Logoped Phoniatr Vocol. 2010;35:45–50.

    Article  Google Scholar 

  21. Pelorson X, Hirschberg A, van Hassel RR, Wijnands APJ, Auregan Y. Theoretical and experimental study of quasi-steady flow separation within the glottis during phonation. J Acoust Soc Am. 1994;96:3416–31.

    Article  Google Scholar 

  22. Moon YJ, Seo JH, Koh SR, Bae YM. Computation of low mach number aeroacoustics. In: 6th Asian computational fluid dynamics conference, Taiwan, Oct 24–27, 2005.

  23. Moon YJ, Seo JH, Bae YM, Roger M, Becker S. A hybrid prediction method for low-subsonic turbulent flow noise. Comput Fluids. 2010;39(7):1125–35.

    Article  MATH  Google Scholar 

  24. Moon YJ. Sound of fluids at low mach numbers. Eur J Mech B Fluids. 2013;40:50–63.

    Article  MathSciNet  Google Scholar 

  25. Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys. 1998;12:620–31.

    Article  Google Scholar 

  26. van Leer B. Towards the ultimate conservative difference scheme: a second-order sequel to Godunov’s method. J Comput Phys. 1979;32(1):101–36.

    Article  MATH  Google Scholar 

  27. Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys. 1986;62(1):40–65.

    Article  MathSciNet  MATH  Google Scholar 

  28. Rhie C, Chow L. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 1983;21:1525–32.

    Article  MATH  Google Scholar 

  29. Fletcher R. Conjugate gradient methods for indefinite systems. Lect Notes Math. 1976;506:73–89.

    Article  MathSciNet  MATH  Google Scholar 

  30. Schwarze R, Mattheus W, Klostermann J, Brcker C. Starting jet flows in a three-dimensional channel with larynx-shaped constriction. Comput Fluids. 2011;48(1):68–83.

    Article  MATH  Google Scholar 

  31. Rothenberg M. A new inverse-filtering technique for deriving the glottal air flow waveform during voicing. J Acoust Soc Am. 1973;53(6):1632–45.

    Article  Google Scholar 

  32. Doval B, d’Alessandro C, Henrich N. The spectrum of glottal flow models. Acta Acust United Acust. 2006;92(6):1026–46.

    Google Scholar 

  33. Neubauer J, Zhang Z, Miraghaie R, Berry DA. Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds. J Acoust Soc Am. 2007;121(2):1102–18.

    Article  Google Scholar 

  34. Dubief Y, Delcayre F. On coherent-vortex identification in turbulence. J Turbul. 2000;1:1–22.

    Article  MathSciNet  MATH  Google Scholar 

  35. Fried E, Idelchik IE. Flow resistance: a design guide for engineers. New York: Hemisphere; 1989.

    Google Scholar 

Download references

Acknowledgements

Part of the work has been funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the research group FOR-894 under Grant No. BR 1494/13-1 which is gratefully acknowledged. Funding of the position of Professor Christoph Bruecker as the BAE SYSTEMS Sir Richard Olver Chair in Aeronautical Engineering is gratefully acknowledged herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Mattheus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattheus, W., Brücker, C. Characteristics of the pulsating jet flow through a dynamic glottal model with a lens-like constriction. Biomed. Eng. Lett. 8, 309–320 (2018). https://doi.org/10.1007/s13534-018-0075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-018-0075-2

Keywords

Navigation