Skip to main content
Log in

Impact of Soil Drench and Foliar Spray of 24-Epibrassinolide on the Growth, Yield, and Quality of Field-Grown Moringa oleifera in Southwest China

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of soil drench (SD) (0.4 and 0.8 mg plant−1) and foliar spray (FS) (0.02, 0.04, and 0.08 ppm) of 24-epibrassinolide on the growth, yield, and quality of field-grown Moringa oleifera were evaluated. The results showed that all of the SD and FS treatments enhanced the net photosynthetic rate, stomatal conductance, transpiration rate, total chlorophyll content, and nitrate reductase activity in Moringa leaves. Both SD and FS promoted vegetative and reproductive growth of Moringa, but FS at an excessive concentration could suppress reproductive growth. Within a certain concentration range, the effect of FS on the reproductive growth was superior to that of SD, whereas the effect of SD on vegetative growth was better than that of FS. All of the 24-epibrassinolide treatments except for FS 0.08 ppm increased the number of seeds per fruit pod, the yield of fruit pods per tree, and the yield of seeds per tree, but the yield of the plants treated with SD was lower compared with FS. The FS 0.04 ppm treatment significantly increased the contents of oleic acid and eicosenoic acid and reduced the content of stearic acid in the seeds. All of the SD and FS treatments increased crude protein content in the leaf powder and seeds of Moringa as well as vitamin C in the leaves. Our results showed that the optimal concentration of 24-epibrassinolide for FS was 0.04 ppm, and the optimal concentration for SD was inferred to be higher than 0.8 mg plant−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali B, Hayat S, Aiman Hasan S, Ahmad A (2006) Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Sci Hortic 110:267–273. doi:10.1016/j.scienta.2006.07.015

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Fariduddin Q, Ahmad A (2008a) 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 72:1387–1392. doi:10.1016/j.chemosphere.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  • Ali Q, Athar H, Ashraf M (2008b) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul 56:107–116. doi:10.1007/s10725-008-9290-7

    Article  CAS  Google Scholar 

  • Amzallag GN (2002) Brassinosteroids as metahormones: evidence for their specific influence during the critical period in sorghum development. Plant Biol 4:656–663. doi:10.1055/s-2002-37397

    Article  CAS  Google Scholar 

  • Anwar F, Bhanger MI (2003) Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J Agric Food Chem 51:6558–6563. doi:10.1021/jf0209894

    Article  CAS  PubMed  Google Scholar 

  • Anwar F, Latif S, Ashraf M, Gilani AH (2007) Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21:17–25

    Article  CAS  PubMed  Google Scholar 

  • AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemistry, Arlington

    Google Scholar 

  • Braun P, Wild A (1984) The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J Plant Physiol 116:189–196. doi:10.1016/S0176-1617(84)80088-7

    Article  CAS  PubMed  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303. doi:10.1146/annurev.arplant.50.1.277

    Article  CAS  PubMed  Google Scholar 

  • Chapman HD, Pratt PF (1973) Methods of analysis for soils, plants and waters. University of California Press, Riverside

    Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451. doi:10.1146/annurev.arplant.49.1.427

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Hasan SAS, Ali B, Hayat S, Ahmad A (2008) Effect of modes of application of 28-homobrassinolide on mung bean. Turk J Biol 32:17–21

    CAS  Google Scholar 

  • Fariduddin Q, Khannam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897

    Article  CAS  Google Scholar 

  • Fujii S, Saka H (2001) Distribution of assimilates to each organ in rice plants exposed to a low temperature at the ripening stage, and the effect of brassinolide on the distribution. Plant Product Sci 4:136–144. doi:10.1626/pps.4.136

    Article  CAS  Google Scholar 

  • Gomes MDMA, Campostrini E, Leal NR, Viana AP, Ferraz TM, Siqueira LDN, Rosa RC, Netto AT, Nunez-Vázquez M, Zullo MA (2006) Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Sci Hortic 110:235–240

    Article  CAS  Google Scholar 

  • Hageman RH, Hucklesby DP (1971) Nitrate reductase from higher plants. Methods Enzymol 23:491–503

    Article  Google Scholar 

  • Hayat S, Ahmad A (2003) Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Ann Appl Biol 143:121–124. doi:10.1111/j.1744-7348.2003.tb00276.x

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A, Mobin M, Hussain A, Fariduddin Q (2000) Photosynthetic rate, growth and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38:469–471

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A, Hussain A, Mobin M (2001) Growth of wheat seedlings raised from the grains treated with 28-homobrassinolide. Acta Physiol Plant 23:27–30

    Article  CAS  Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A (2011) Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica 49:397–404. doi:10.1007/s11099-011-0051-x

    Article  CAS  Google Scholar 

  • Heald WR (1965) Calcium and magnesium. In: Black CA (ed) Methods of soil analysis, Part II. Australian Society of Anaesthetists, Madison, p 999–1009

    Google Scholar 

  • Hnilička F, Hniličková H, Martinková J, Bláha L (2007) The influence of drought and the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Cereal Res Commun 35:457–460. doi:10.1556/CRC.35.2007.2.73

    Article  Google Scholar 

  • Hossain ME, Islam ME, Mostafa M, Dey SK, Chowdhury MM (2003) Chemical investigation on oil from Sapium indicum seed. Resources 38:231–236

    Google Scholar 

  • Janeczko A, Filek W, Biesaga-Kościelniak J, Marcińska I, Janeczko Z (2003) The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell Tiss Organ Cult 72:147–151. doi:10.1023/A:1022291718398

    Article  CAS  Google Scholar 

  • Kaiser JJ, Lewis OAH (1984) Nitrate reductase and glutamine synthetase activity in leaves and roots of nitrate fed Helianthus annuus L. Plant Soil 70:127–130

    Article  Google Scholar 

  • Kalinich JF, Bhushan Mandava N, Todhunter JA (1985) Relationship of nucleic acid metabolism to brassinolide-induced responses in beans. J Plant Physiol 120:207–214. doi:10.1016/S0176-1617(85)80107-3

    Article  CAS  Google Scholar 

  • Kang YY, Guo SR (2011) Role of brassinosteroids on horticultural crops. In: Hayat S, Ahmad A (eds) Brassinosteroids, a class of plant hormone. Springer, Berlin, pp 269–288

    Chapter  Google Scholar 

  • Kesy J, Trzaskalska A, Galoch E, Kopcewicz J (2003) Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. Biol Plant 47:597–600. doi:10.1023/B:BIOP.0000041069.27805.89

    Article  CAS  Google Scholar 

  • Khripach V, Zhabinskii V, Groot AD (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447. doi:10.1006/anbo.2000.1227

    Article  CAS  Google Scholar 

  • Khripach VA, Zhabinskii VN, Khripach NB (2003) New practical aspects of brassinosteroids and results of their 10 year agricultural use in Russia and Balarus. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer, Dordrecht, pp 189–230

    Chapter  Google Scholar 

  • Li J, Chory J (1999) Brassinosteroid actions in plants. J Exp Bot 50:275–282. doi:10.1093/jxb/50.332.275

    CAS  Google Scholar 

  • Long H, Sha Y, Zhu H, Zhang Y, Jin J, Shi L (2008) Selection of adaptive grass and frutex and their planting benefits in the arid-hot valleys of Yuanmou. Wuhan Univ J Nat Sci 13:317–332. doi:10.1007/s11859-008-0310-2

    Article  Google Scholar 

  • Maia NB, Bovi OA, Zullo MAT, Perecin MB, Granja NP, Carmello QAC, Robaina C, Coll F (2004) Hydroponic cultivation of mint and vetiver with spirostane analogues of brassinosteroids. Acta Hortic 644:55–59. doi:10.17660/ActaHortic.2004.644.4

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52. doi:10.1146/annurev.pp.39.060188.000323

    Article  CAS  Google Scholar 

  • Murphy J, Riley JR (1962) A modified single solution method for the determination of P in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Müssig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129:1241–1251. doi:10.1104/pp.011003

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishikawa N, Toyama S, Shida A, Futatsuya F (1994) The uptake and the transport of 14C-labeled epibrassinolide in intact seedlings of cucumber and wheat. J Plant Res 107:125–130

    Article  CAS  Google Scholar 

  • Nishikawa N, Shida A, Toyama S (1995) Metabolism of 14C-labeled epibrassinolide in intact seedlings of cucumber and wheat. J Plant Res 108:65–69

    Article  CAS  Google Scholar 

  • Pant KS, Khosla V, Kumar D, Gairola S (2006) Seed oil content variation in jatropha curcas Linn. in different altitudinal ranges and site conditions in H.P. India. Lyonia 11:31–34

    Google Scholar 

  • Papadopoulou E, Grumet R (2005) Brassinosteroid-induced female-ness in cucumber and relationship to ethylene yield. Hortic Sci 40:1763–1767

    CAS  Google Scholar 

  • Pozo L, Noriega C, Robaina C, Coll F (1994) Algunos resultados en el cultivo de los frutales mediante la utilizacio’n de brasinoesteeroides o compuestos analogos. Cult Trop 15:79–92

    Google Scholar 

  • Pratt PF (1965) Digestion with hydrofluoric and perchloric acids for total potassium and sodium. In: Black CA (ed) Methods of soil analysis, Part II. Australian Society of Anaesthetists, Madison, pp 1019–1021

    Google Scholar 

  • Ramachandran C, Peter KV, Gopalakrishnan PK (1980) Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Econ Bot 34:276–283. doi:10.1007/BF02858648

    Article  CAS  Google Scholar 

  • Ramraj VM, Vyas BN, Godrej NB, Mistry KB, Swami BN, Singh N (1997) Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J Agric Sci 128:405–413. doi:10.1017/S0021859697004322

    Article  CAS  Google Scholar 

  • Rao AAR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids—a new class of phytohormones. Curr Sci 82:1239–1245

    Google Scholar 

  • Saroop S, Thaker VS, Chanda SV, Singh YD (1998) Light and nitrate induction of nitrate reductase in kinetin-and gibberellic acid-treated mustard cotyledons. Acta Physiol Plant 20:359–362. doi:10.1007/s11738-998-0020-6

    Article  CAS  Google Scholar 

  • Schilling G, Schiller C, Otto S (1991) Influence of brassinosteroids on organ relations and enzyme activities of sugar-beet plants. In: Cutler HG, Yokota T, Adam G (eds) Brassino-steroids: chemistry, bioactivity and applications. American Chemical Society, Washington, DC, pp 208–219

    Chapter  Google Scholar 

  • Serna M, Hernández F, Coll F, Coll Y, Amorós A (2012) Brassinosteroid analogues effects on the yield and quality parameters of greenhouse-grown pepper (Capsicum annuum L.). Plant Growth Regul 68:333–342. doi:10.1007/s10725-012-9718-y

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2007) Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pak J Bot 66:1544–1552

    Google Scholar 

  • Su AZ, Zheng YX, Wu JC, Zhang YP (2012) Effects of planting density on the branching pattern and biomass of Moringa oleifera plantation. Chin. J Ecol 31:1057–1063 (in Chinese)

    Google Scholar 

  • Swamy KN, Seeta Ram Rao S (2008) Influence of 28-homobrassinolide on growth, photosynthesis metabolite and essential oil content of geranium [Pelargonium graveolens (L.) Herit]. Am J Plant Physiol 3:173–179. doi:10.3923/ajpp.2008.173.179

    Article  CAS  Google Scholar 

  • Symons GM, Reid JB (2004) Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135:2196–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takematsu T, Takeuchi Y (1989) Effects of brassinosteroids on growth and yields of crops. Proc Jpn Acad Ser B Phys Biol Sci 65:149–152. doi:10.2183/pjab.65.149

    Article  CAS  Google Scholar 

  • Vardhini BV, Rao SSR (1998) Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea. Phytochemistry 48:927–930. doi:10.1016/S0031-9422(97)00710-3

    Article  CAS  Google Scholar 

  • Wubs AM, Heuvelink E, Marcelis LFM (2009) Abortion of reproductive organs in sweet pepper (Capsicum annuum L.): a review. J Hortic Sci Biotech 84:467–475. doi:10.1080/14620316.2009.11512550

    Article  Google Scholar 

  • Yang ZS, Shi GA, Jin JH (1992) Effects of epibrassinolide, a growth promoting steroidal lactone I. Activity in selected bioassays. Physiol Plant 53:445–452

    Google Scholar 

  • Yokota T (1997) The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci 2:137–143. doi:10.1016/S1360-1385(97)01017-0

    Article  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143. doi:10.1093/jxb/erh124

    Article  CAS  PubMed  Google Scholar 

  • Zheng YX, Wu JC, CAO FL, Zhang YP (2010) Effects of water stress on photosynthetic activity, dry mass partitioning and some associated metabolic changes in four provenances of Neem (Azadirachta indica A. Juss). Photosynthetica 3:361–369. doi:10.1007/s11099-010-0047-y

    Article  Google Scholar 

Download references

Acknowledgements

We are sincerely grateful to the anonymous reviewers for their valuable suggestions and comments. This study was financially supported by the Special Scientific Research Fund of the Forestry Public Welfare Profession of China (Grant No. 201504113) and the Fundamental Research Funds for the Central Non-profit Research Institution of CAF (CAFYBB2014QA016 and Riricaf2014003M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangchong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Xu, B., Ren, K. et al. Impact of Soil Drench and Foliar Spray of 24-Epibrassinolide on the Growth, Yield, and Quality of Field-Grown Moringa oleifera in Southwest China. J Plant Growth Regul 36, 931–941 (2017). https://doi.org/10.1007/s00344-017-9698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9698-2

Keywords

Navigation