Skip to main content
Log in

Biological Control of Fusarium sp. NBRI-PMSF12 Pathogenic to Cultivated Betelvine by Bacillus sp. NBRI-W9, a Potential Biological Control Agent

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Betelvine is prone to several fungal diseases including leaf spots, foot and root rot caused by Fusarium spp. due to humid conditions prevailing in fields. In the present study, a potent antagonistic bacterial endophyte and a virulent fungal pathogen were selected after rigorous screening of isolates from different betelvine varieties to provide an efficient biocontrol strategy in cultivation of betelvine. Wild varieties of crops are a rich source of untapped endophytes. Of the four betelvine varieties used for isolations and screening, the wild variety was richest in endophytic populations. Using 16S rRNA sequencing, the selected antagonist was identified as Bacillus sp. (NBRI-W9). The pathogen, virulent against cultivated varieties, was identified as Fusarium sp. (NBRI-PMSF12) using ITS 1 and 2 region sequencing. Under in vitro and field conditions, NBRI-W9 was able to induce early rooting, provide plant growth promotion, increase leaf size and yield (leaf number) and provide biocontrol against the Fusarium sp. infection. NBRI-W9 treatments showed bacterial colonization on the leaf surface preferably in the vicinity of pearl glands and the collenchyma region in scanning electron microscope (SEM) studies. NBRI-W9 was observed to directly enter the leaf by degrading cell walls and colonize the subcellular layers. SEM analysis showed direct confrontation of NBRI-W9 with Fusarium on the leaf surface and in the collenchyma region as one of the probable modes of biocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah RA, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88

    Article  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  CAS  PubMed  Google Scholar 

  • Alam S, Islam MR, Sarkar MA, Chowdhury AN, Alam MS, Lee MW (2004) In vitro effect of fungicides, plant extracts and smoke on conidial germination of Fusarium oxysporum root rot pathogen of piper betel. Mycobiology 32:42–46

    Article  Google Scholar 

  • Al-Samarrai TH, Schmid J (2000) A simple method for extraction of fungal genomic DNA. Lett Appl Microbiol 30:53–56

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Dasgupta AK (1992) Studies on the persistence of carbofuran residues in betelvine. Pestology 16:14–17

    Google Scholar 

  • Bozzola MS, John J, Russell LD (1999) Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning, Burlington

    Google Scholar 

  • Butler EJ, Bisby GR (1960) The fungi of India. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Chaurasia B, Pandey A, Palni LM, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia RS, Johri JK, Singh HB (2012) Betelvine (Piper betel L.) diseases, a survey and management strategies. In: Chourasia HK, Roy AK, Kumari U (eds) Glimpses of phytopathology for sustainable agriculture. A.B. Publication, Mayur Vihar, pp 420–427

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Cle´ment C, Barka EA (2005b) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta B, Sen C (1999) Assessment of Phytophthora root rot of betelvine and its management using chemicals. J Mycol Pl Path 29:91–95

    Google Scholar 

  • Dasgupta B, Dutta P, Das S (2011) Biological control of foot rot of betelvine (Piper betel L.) caused by Phytophthora parasitica dastur. J Plant Protec Sci 3:15–19

    Google Scholar 

  • Felsenstein J (1993) PHYLIP: Phylogeny Inference Package, version 3.5c. University of Washington, Seattle

    Google Scholar 

  • Ferreira-Filho AS, Quecine MC, Bogas AC, de Barros Rossetto P, de Souza Lima AO, Lacava PT, Azevedo JL, Araújo WL (2012) Endophytic Methylobacterium extorquens expresses a heterologous β -1,4-endoglucanase A (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa. W J Microbiol Biotech 28:1475–1481

    Article  CAS  Google Scholar 

  • Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257

    Article  Google Scholar 

  • Gao X, Gong Y, Huo Y, Han Q, Kang Z, Huang L (2015) Endophytic Bacillus subtilis Strain E1R-J Is a Promising Biocontrol Agent for Wheat Powdery Mildew. BioMed Research International, 2015

  • Gudesblat GE, Torres PS, Vojnov AA (2009) Stomata and pathogens: warfare at the gates. Plant Sig Behav 4:1114–1116

    Article  CAS  Google Scholar 

  • Hale IL, Broders K, Iriarte G (2014) A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Front Plant Sci. 5:1–7

    Article  Google Scholar 

  • Hallman J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant-pathogen associations. British Society for Plant Paththology. CABI Publications, London, pp 87–120

    Chapter  Google Scholar 

  • Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice 12:92–101

    Google Scholar 

  • Jaroszuk-Ściseł J, Kurek E, Słomka A, Janczarek M, Rodzik B (2011) Activities of cell wall degrading enzymes in autolyzing cultures of three Fusarium culmorum isolates: growth-promoting, deleterious and pathogenic to rye (Secale cereale). Mycologia 103:929–945

    Article  PubMed  Google Scholar 

  • Kikot GE, Hours RA, Alconada TM (2009) Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microbiol 49:231–241

    Article  CAS  PubMed  Google Scholar 

  • Malfanova N, Lugtenberg B, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there? In: de Frans Bruijn J (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, New Jersey, p 15

    Google Scholar 

  • McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Zamir D (2013) Agriculture: feeding the future. Nature 499:23–24

    Article  CAS  PubMed  Google Scholar 

  • Melnick RL, Bailey Zidack NKBA, Maximova SN, Guiltinan M (2008) Bacterial endophytes: bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control 46:46–56

    Article  Google Scholar 

  • Melnick RL, Bailey BA, Backman PA (2013) Bacterial endophytes of perennial crops for management of plant disease. Bacteria in agrobiology: disease management. Springer, Berlin, pp 49–76

    Chapter  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moy M, Li HM, Sullivan R, White JF Jr, Belanger FC (2002) Endophytic fungal β-1,6-glucanase expression in the infected host grass. Plant Physiol 130:1298–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyna MR, Bera S (2011) Paan loses flavour. Down to Earth 31st Mar 2011. http://www.downtoearth.org.in/coverage/paan-loses-flavour-33175

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nhu VTP, Diep CN (2014) Isolation, characterization and phylogenetic analysis of endophytic bacteria in rice plant cultivated on soil of Phu Yen province. Vietnam Am J Life Sci 2:117–127

    Article  Google Scholar 

  • Pan D, Mionetto A, Tiscornia S, Bettucci L (2015) Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotox Res 31:137–143

    Article  CAS  Google Scholar 

  • Paranjape R, Gundala SR, Lakshminarayana N, Sagwal A, Asif G, Pandey A, Aneja R (2013) Piper betel leaf extract: anticancer benefits and bio-guided fractionation to identify active principles for prostate cancer management. Carcinogenesis 34:1558–1566

    Article  Google Scholar 

  • Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. W J Microbiol Biotechnol 23:853–858

    Article  Google Scholar 

  • Reddy PP (2014) Biointensive integrated pest management in plantation and spice crops (chapter v). Biointensive integrated pest management in horticultural ecosystems. Springer, India, pp 3–20

    Chapter  Google Scholar 

  • Rekha VPB, Kollipara M, Srinivasa Gupta BRSS, Bharath Y, Pulicherla KK (2014) A review on Piper betel L.: nature’s promising medicinal reservoir. Am J Ethnomed 1:276–289

    Google Scholar 

  • Roth-Nebelsick A, Fernandez V, Peguero-Pina JJ, Domingo Sancho-Knapik, Eustaquio Gil-Pelegrín (2013) Stomatal encryption by epicuticular waxes as a plastic trait modifying gas exchange in a mediterranean evergreen species (Quercus coccifera L.). Plant Cell Environ 36:579–589

    Article  PubMed  Google Scholar 

  • Sazci A, Erenler K, Radford A (1986) Detection of cellulolytic fungi by using congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J Appl Bact 61:559–562

    Article  CAS  Google Scholar 

  • Sazwi NN, Nalina T, Haji Z, Rahim A (2013) Antioxidant and cytoprotective activities of piper betel, areca catechu, uncaria gambir and betel quid with and without calcium hydroxide. BMC Complement Altern Med 13:351

    Article  PubMed  Google Scholar 

  • Schuck S, Weinhold A, Baldwin IT (2014) Isolating fungal pathogens from a dynamic disease outbreak in a native plant population to establish plant-pathogen bioassays for the ecological model plant Nicotiana attenuata. PLoS ONE 9(7):e102915

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Mehta S, Singh HB, Nautiyal CS (2003) Biocontrol of collar rot disease of betelvine (Piper betel L.) caused by Sclerotium rolfsii by using rhizosphere-competent Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N. Curr Microbiol 47:153–158

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar P, Nagarajan P (2010) Production of chitinase by solid state fermentation from rice bran. Intern J Environ Sci Develop 1:435–441

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotech 99:2955–2965

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal rhibosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diedo, pp 315–322

    Google Scholar 

Download references

Acknowledgments

The study was supported by Emeritus grant of Dr. JK Johri and in-house grant of CSIR-National Botanical Research Institute, Lucknow. The authors thank Dr. P.N. Saxena, CSIR-IITR, Lucknow, for his help with the scanning electron microscopy work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayandra Kumar Johri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.C., Shukla, D., Fatima, T. et al. Biological Control of Fusarium sp. NBRI-PMSF12 Pathogenic to Cultivated Betelvine by Bacillus sp. NBRI-W9, a Potential Biological Control Agent. J Plant Growth Regul 36, 106–117 (2017). https://doi.org/10.1007/s00344-016-9623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9623-0

Keywords

Navigation