Skip to main content
Log in

Endogenous Phytohormones in Spontaneously Regenerated Centaurium erythraea Rafn. Plants Grown In Vitro

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Phytohormones are important regulators of numerous developmental and physiological processes in plants. Spontaneous morphogenesis of the common centaury (Centaurium erythraea Rafn.) is possible on nutrition medium without addition of any plant growth regulator depending solely on endogenous phytohormone levels. Thus, this plant species represents a very good model system for the investigation of numerous physiological processes under phytohormonal control in vitro. We analysed the total amount of endogenous cytokinins (CKs) including the contents of their individual groups in shoots and roots of C. erythraea plants grown in vitro. The total amount of endogenous CKs was 1.4 times higher in shoots than in roots. Inactive or weakly active N-glucosides found to predominate in both organs of centaury plants, whereas free bases and O-glucosides represented only a small portion of the total CK pool. Consequently, centaury roots showed higher IAA content as well as IAA/free CK base ratios compared to shoots. Centaury tissues also showed increased levels of “stress hormones”. In contrast to SA, considerably higher levels of ABA were found in centaury shoots than in roots. Our results could serve as a basis for understanding and elucidating spontaneous de novo shoot organogenesis and further plant regeneration of C. erythraea in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

CK:

Cytokinin

cisZ:

cis-zeatin

cisZ7G:

cis-zeatin 7-glucoside

cisZ9G:

cis-zeatin 9-glucoside

cisZOG:

cis-zeatin O-glucoside

cisZR:

cis-zeatin 9-riboside

cisZRMP:

cis-zeatin 9-riboside-5′-monophosphate

cisZROG:

cis-zeatin 9-riboside O-glucoside

DHZ:

Dihydrozeatin

DHZ7G:

Dihydrozeatin 7-glucoside

DHZ9G:

Dihydrozeatin 9-glucoside

DHZOG:

Dihydrozeatin O-glucoside

DHZR:

Dihydrozeatin 9-riboside

DHZRMP:

Dihydrozeatin 9-riboside-5′-monophosphate

DHZROG:

Dihydrozeatin 9-riboside O-glucoside

iP:

N 6-(∆2-isopentenyl)adenine

iP7G:

N 6-(∆2- isopentenyl)adenine 7-glucoside

iP9G:

N 6-(∆2- isopentenyl)adenine 9-glucoside

iPR:

N 6-(∆2- isopentenyl)adenine 9-riboside

iPRMP:

N 6-(∆2- isopentenyl)adenine 9-riboside-5′-monophosphate

transZ:

trans-zeatin

transZ7G:

trans-zeatin 7-glucoside

transZ9G:

trans-zeatin 9-glucoside

transZOG:

trans-zeatin O-glucoside

transZR:

trans-zeatin 9-riboside

transZRMP:

trans-zeatin 9-riboside-5′-monophosphate

transZROG:

trans-zeatin 9-riboside O-glucoside

References

  • Behr M, Motyka V, Weihmann F, Malbeck J, Deising HB, Wirsel SGR (2012) Remodelling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol Plant Microbe Interact 25:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Caboni E, D’Angeli S, Chiappetta A, Innocenti AM, Van Onckelen H, Damiano C (2002) Adventitious shoot regeneration from vegetative shoot apices in pear and putative role of cytokinin accumulation in the morphogenetic process. Plant Cell Tissue Org 70:199–206

    Article  CAS  Google Scholar 

  • D’Angeli S, Lauri P, Dewitte W, Van Onckelen H, Caboni E (2001) Factors affecting in vitro shoot formation from vegetative shoot apices of apple and relationship between organogenic response and cytokinin localisation. Plant Biosyst 135:95–100

    Article  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi C-ME, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682

    Article  CAS  PubMed  Google Scholar 

  • Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid phase extraction. J Chromatogr A 950:21–29

    Article  PubMed  Google Scholar 

  • Dobrev PI, Vanková R (2012) Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. In: Shabala S, Cuin TA (eds) Plant salt tolerance: methods and protocols, methods in molecular biology, vol 913. Springer, New York, pp 251–261

    Chapter  Google Scholar 

  • Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 1075:159–166

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Vanková R, Motyka V, Herrera C, Zizkova E, Auer C (2010) Characterization of Arabidopsis thaliana mutant ror-1 (roscovitine-resistant) and its utilization in understanding of the role of cytokinin N-glucosylation pathway in plants. Plant Growth Regul 61:231–242

    Article  CAS  Google Scholar 

  • Emery RJN, Leport L, Barton JE, Turner NC, Atkins A (1998) cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117:1515–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezhova TA (2003) Genetic control of totipotency of plant cells in an in vitro culture. Russ J Dev Biol 34:197–204

    Article  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org 74:201–228

    Article  CAS  Google Scholar 

  • Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840

    Article  PubMed  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    Article  CAS  PubMed  Google Scholar 

  • Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. N Chem Biol 7:766–768

    Article  CAS  Google Scholar 

  • Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi K, Nakagawa S, Kobayashi M, Oshio H, Sakurai A, Takashi N (1988) Levels of IAA, cytokinins, ABA and ethylene in rice plants as affected by a gibberellin biosynthesis inhibitor, uniconazole-P. Plant Cell Physiol 29:97–104

    CAS  Google Scholar 

  • Jensen SR, Schripsema J (2002) Chemotaxonomy and pharmacology of Gentianaceae. In: Struve L, Albert V (eds) Gentianaceae: systematics and natural history. Cambridge University Press, Cambridge, pp 573–631

    Google Scholar 

  • Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada-Nobusada T, Sakakibara H (2009) Molecular basis for cytokinin biosynthesis. Phytochemistry 70:444–449

    Article  CAS  PubMed  Google Scholar 

  • Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E (2000) Purine cytokinins: a proposal for abbreviations. Plant Growth Regul 32:253–256

    Article  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  CAS  PubMed  Google Scholar 

  • Letham DS (1994) Cytokinins as phytohormones-sites of biosynthesis, translocation and function of translocated cytokinin. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, pp 57–80

    Google Scholar 

  • Letham DS, Zhang R (1989) Cytokinin translocation and metabolism in lupin species II. New nucleotide metabolites of cytokinins. Plant Sci 64:161–165

    Article  CAS  Google Scholar 

  • Liu J, Mehdi S, Topping J, Tarkowski P, Lindsey K (2010) Modelling and experimental analysis of hormonal crosstalk in Arabidopsis. Mol Syst Biol 6, Article number 373:1–13

  • Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmülling T, Romanov GA (2015) Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66(7):1851–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malá J, Gaudinová A, Dobrev P, Eder J, Cvirková M (2005) Role of phytohormones in organogenic ability of elm multiplicated shoots. Biol Plant 50:8–14

    Article  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffatt B, Pethe C, Laloue M (1991) Metabolism of benzyladenine is impaired in a mutant of Arabidopsis thaliana lacking adenine phosphoribosyltransferase activity. Plant Physiol 95:900–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physio 52:89–118

    Article  CAS  Google Scholar 

  • Moncaleán P, Rodríguez A, Fernández B (2002) Plant growth regulators as putative physiological markers of developmental stage in Prunus persica. Plant Growth Regul 36:27–29

    Article  Google Scholar 

  • Montalbán IA, Novák O, Rolčik J, Strnad M, Moncaleán P (2013) Endogenous cytokinin and auxin profiles during in vitro organogenesis from vegetative buds of Pinus radiata adult trees. Physiol Plant 148:214–231

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Noodén LD, Letham DS (2003) Cytokinin metabolism and signaling in the soybean plant. Aust J Plant Physiol 20:639–653

    Article  Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of catokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SH, Qin X, Zeevaart JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Letham DS, Jameson PE, Zhang R, Parker CW (1988) Cytokinin biochemistry in relation to leaf senescence: IV. Cytokinin metabolism in soybean explants. Plant Physiol 88:788–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Sym Soc Exp Biol 11:118–131

    CAS  Google Scholar 

  • Stirk WA, Novák O, Strnad M, Van Staden J (2003) Cytokinins in macroalgae. Plant Growth Regul 41:13–24

    Article  CAS  Google Scholar 

  • Subotić A, Budimir S, Grubišić D, Momčilović I (2003/2004) Direct regeneration of shoots from hairy root cultures of Centaurium erythraea inoculated with Agrobacterium rhizogenes. Biol Plant 47:617–619

  • Subotić A, Jevremović S, Grubišić D, Janković T (2009a) Spontaneous plant regeneration and production of secondary metabolites from hairy root cultures of Centaurium erythraea Rafn. In: Jain SM, Saxena PK (eds) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, methods in molecular biology, vol 547. Springer, Berlin, pp 205–217

    Google Scholar 

  • Subotić A, Jevremović S, Grubišić D (2009b) Influence of cytokinins on in vitro morphogenesis in root cultures of Centaurium erythraea—valuable medicinal plant. Sci Hortic 120:386–390

    Article  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • To JPC, Kieber JJ (2007) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92

    Article  Google Scholar 

  • Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J 69:355–365

    Article  CAS  PubMed  Google Scholar 

  • Trifunović M, Cingel A, Simonović A, Jevremović S, Petrić M, Dragićević I, Motyka V, Dobrev PI, Zahajská L, Subotić A (2013) Overexpression of Arabidopsis cytokinin oxidase/dehydrogenase genes AtCKX1 and AtCKX2 in transgenic Centaurium erythraea Rafn. Plant Cell Tissue Org 115:139–150

    Article  Google Scholar 

  • Trifunović M, Motyka V, Cingel A, Subotić A, Jevremović S, Petrić M, Holík J, Malbeck J, Dobrev PI, Dragićević I (2015) Changes in cytokinin content and altered cytokinin homeostasis in AtCKX1 and AtCKX2-overexpressing centaury (Centaurium erythraea Rafn.) plants grown in vitro. Plant Cell Tiss Org 120:767–777

    Article  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signalling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentão P, Andrade PB, Silva E, Vincente A, Santos H, Bastos ML, Seabra R (2002) Methoxylated xanthones in the quality control of small centaury (Centaurium erythraea) flowering tops. J Agric Food Chem 50:460–463

    Article  PubMed  Google Scholar 

  • Veach YK, Martin RC, Mok DW, Malbeck J, Vankova R, Mok MC (2003) O-Glucosylation of cis-zeatin in maize. Characterization of genes, enzymes and endogenous cytokinins. Plant Physiol 131:1374–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Schwartzenberg K, Nunez MF, Blaschke H, Dobrev PI, Novák O, Motyka V, Strnad M (2007) Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol 145:786–800

    Article  Google Scholar 

  • Wawrosch C, Maskay N, Kopp B (1999) Micropropagation of the threatened Nepalese medicinal plant Swertia chirata Buch.–Ham. ex Wall. Plant Cell Rep 18:997–1001

    Article  CAS  Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Hanus J, Holub J, Schmülling T, Van Onckelen H, Strnad M (2003a) New cytokinin metabolites in IPT transgenic Arabidopsis thaliana plants. Physiol Plant 118:127–137

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Laucou V, Stems R, Van Onckelen H, Schmülling T (2003b) Cytokinin deficient transgenic Arabidopsis plant show multiple developmental alterations indicating opposite function of cytokinins in the regulation of shoot and root meristem sctivity. Plant Cell 15:2532–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H (2004) Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol 134:1654–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Záveská Drábková L, Dobrev PI, Motyka V (2015) Phytohormone profiling across the bryophytes. PLoS One 10(5):e0125411

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON173015) and the Czech Science Foundation (P506/11/0774).

Authors contribution

M. Trifunović-Momčilov and M. Petrić contributed to all in vitro experiments. M. Trifunović-Momčilov and V. Motyka contributed in data analyses and manuscript preparation. J. Holík, J. Malbeck and P.I. Dobrev contributed to all experimental work considering endogenous plant hormones analyses. S. Jevremović contributed to all statistical analyses. I.Č. Dragićević contributed to data analyses and obtained result’s interpretation. A. Subotić supervised the whole study and also contributed in preparing the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milana Trifunović-Momčilov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Milana Trifunović-Momčilov and Václav Motyka have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. F1

The rate of individual CK groups in total CK content in Centaurium erythraea shoots (a) and roots (b) grown in vitro

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifunović-Momčilov, M., Motyka, V., Dragićević, I.Č. et al. Endogenous Phytohormones in Spontaneously Regenerated Centaurium erythraea Rafn. Plants Grown In Vitro. J Plant Growth Regul 35, 543–552 (2016). https://doi.org/10.1007/s00344-015-9558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9558-x

Keywords

Navigation