Skip to main content
Log in

Phenotypic Reversal in Arabidopsis thaliana: Sucrose as a Signal Molecule Controlling the Phenotype of Gravi- and Photo-tropism Mutants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In experimental work with Arabidopsis thaliana, sucrose is routinely used in growth media as an energy source assuring vigorous growth and stable development. We investigated the impact of sucrose on the phenotypic stability of two early tropism mutants of Arabidopsis with defects in either the EHB1 or AGD12 gene. Database analyses show that both these genes possess in their upstream promoter regions sucrose- and light-responsive elements. We show that exogenously applied sucrose is able to revert the gravitropic and phototropic phenotypes associated with the two mutants. Depending on the specific tropism assays and the mutant employed, sucrose elicits either a change from hypertropism to hypotropism or vice versa from hypotropism to hypertropism. The observations serve as a caveat to view sucrose exclusively under the aspect of energy supply. The capability of sucrose to elicit phenotypic reversals argues strongly for its role as an essential signaling molecule. The association of the tropism genes, EHB1 and AGD12, with several sucrose-responsive elements indicates that these cis-acting elements, in conjunction with the requisite transcription factors, constitute very likely the physical basis for the observed sucrose effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AGD12:

ARF-gap domain12

ARF:

ADP-ribosylation factor

ARF-GAP:

ARF GTPase-activating protein

C2/CaLB:

Protein kinase C conserved region 2/calcium/lipid-binding domain

EHB1:

Enhanced bending1

GAP:

GTPase-activating protein

NPH3:

Non-phototropic hypocotyl3

NPY:

Naked pins in YUC mutants

PHOT1:

Phototropin1

PHOT2:

Phototropin2

PIF:

Phytochrome-interacting factor

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Çakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  PubMed  PubMed Central  Google Scholar 

  • Dümmer M, Forreiter C, Galland P (2015) Gravitropism in Arabidopsis thaliana: root-specific action of the EHB gene and violation of the resultant law. J Plant Physiol. doi:10.1016/jplph.2015.09.008

  • Friml J, Wiśniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Galland P (2002) Tropisms of Avena coleoptiles: sine law for gravitropism, exponential law for photogravitropic equilibrium. Planta 215:779–784

    Article  CAS  PubMed  Google Scholar 

  • Grierson C, Du JS, de Torres Zabala M, Beggs K, Smith C, Holdsworth M, Bevan M (1994) Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J 5:815–826

    Article  CAS  PubMed  Google Scholar 

  • Grolig F, Eibel P, Schimek C, Schapat T, Dennison DS, Galland P (2000) Interaction between gravitropism and phototropism in sporangiophores of Phycomyces. Plant Physiol 123:765–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, White PJ (2011) Sugar signaling in root responses to low phosphorus availability. Plant Physiol 156:1033–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen RB, Lykke-Andersen K, Frandsen GI, Nielsen HB, Haseloff J, Jespersen HM, Mundy J, Skriver K (2000) Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain. Plant Mol Biol 44:799–814

    Article  CAS  PubMed  Google Scholar 

  • Kircher S, Schopfer (2012) Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Nat Acad Sci USA 109:11217–11221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauer T, Dümmer M, Landgraf F, Forreiter C (2011) A negative effector of blue light-induced and gravitropic bending in Arabidopsis thaliana. Plant Physiol 156:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leivar P, Monte E (2014) PIFs: systems integrators in plant development. Plant Cell 26:56–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Dai X, Cheng Y, Zhao Y (2011) NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant 4:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CA, Lim EK, Yu SM (1998) Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J Biol Chem 273:10120–10131

    Article  CAS  PubMed  Google Scholar 

  • Molas ML, Kiss JZ (2009) Phototropism and gravitropism in plants. Adv Bot Res 49:1–34

    Article  CAS  Google Scholar 

  • Molendijk AJ, Ruperti B, Palme K (2004) Small GTPases in vesicle trafficking. Curr Oinion Plant Biol 7:694–700

    Article  CAS  Google Scholar 

  • Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961–964

    Article  CAS  PubMed  Google Scholar 

  • Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) sugar sensing and signaling in plants. Conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rook F, Hadingham SA, Li Y, Bevan MW (2006) Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ 29:426–434

    Article  CAS  PubMed  Google Scholar 

  • Saether N, Iversen TH (1991) Gravitropism and starch statoliths in an Arabidopsis mutant. Planta 184:491–497

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    Article  CAS  PubMed  Google Scholar 

  • Song I, Lu CR, Brock TG, Kaufman PB (1988) Do starch statoliths act as the gravisensors in cereal grass pulvini? Plant Physiol 86:1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tognetti JA, Pontis HG, Martínez-Noël (2013) Sucrose signaling in plants. A world yet to be explored. Plant Signal Behav 8:e23316-4

    Google Scholar 

  • Vandeputte GE, Delcour JA (2010) From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydr Polymers 58:246–266

    Google Scholar 

  • Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610–1614

    Article  CAS  PubMed  Google Scholar 

  • Yaseen M, Ahmad T, Sabiok G, Standardi A, Hafiz IA (2013) review: role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40:2837–2849

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mayba O, Pfeiffer A, Shi H, Teppermann JM, Speed TP, Speed TP, Quail PH (2013) A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet 9:e1003244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants DLR/BMWi (50 BW 725 and 50 BW 1025) to PG. We are greatly indebted to Agnes Damm, Marco Göttig, and Sigrid Völk for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Galland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dümmer, M., Michalski, C., Forreiter, C. et al. Phenotypic Reversal in Arabidopsis thaliana: Sucrose as a Signal Molecule Controlling the Phenotype of Gravi- and Photo-tropism Mutants. J Plant Growth Regul 35, 430–439 (2016). https://doi.org/10.1007/s00344-015-9550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9550-5

Keywords

Navigation