Skip to main content
Log in

Proteins and Metabolites Regulated by Trinexapac-ethyl in Relation to Drought Tolerance in Kentucky Bluegrass

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plants have developed various mechanisms in adaptation to water deficit stress, including growth retardant to reduce water loss. Previous studies reported that plants treated with a growth inhibitor, trinexapac-ethyl (TE), had improved drought tolerance. The objective of this study was to determine alterations in proteins and metabolite accumulation associated with drought tolerance improvement in a perennial grass species, Kentucky bluegrass (Poa pratensis), induced by TE application. Plants were treated with TE [1.95 ml l−1 (v:v); a.i. TE = 0.113%] through foliar spray for 14 days, and then subjected to drought stress by withholding irrigation for 15 days in growth chambers. TE-treated plants exhibited significantly higher relative water content and photosynthetic capacity and lower membrane leakage than nontreated plants under drought stress, suggesting TE-enhanced drought tolerance in Kentucky bluegrass. Physiological improvement in drought tolerance through TE application was associated with the increased accumulation of various proteins and metabolites, including ferritin, catalase, glutathione-S-transferase, Rubisco, heat shock protein 70, and chaperonin 81, as well as fatty acids (palmitic acid, α-linolenic acid, linoleic acid, and octadecanoic acid). Our results suggest that TE may regulate metabolic processes for antioxidant defense, protective protein synthesis, photorespiration, and fatty acid synthesis, and thereby contribute to better drought tolerance in Kentucky bluegrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashraf M, Karim F, Rasul E (2002) Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul 36:49–59

    Article  CAS  Google Scholar 

  • Bernardi P, Penzo D, Wojtczak L (2002) Mitochondrial energy dissipation by fatty acids: mechanisms and implications for cell death. Vitam Horm 65:97–126

    Article  PubMed  CAS  Google Scholar 

  • Bian X, Merewitz E, Huang B (2009) Effects of trinexapac-ethyl on drought responses in creeping bentgrass associated with water use and osmotic adjustment. J Am Soc Hortic Sci 134:505–510

    Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Briat JF (1996) Roles of ferritin in plants. J Plant Nutr 19:1331–1342

    Article  CAS  Google Scholar 

  • Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  Google Scholar 

  • Chen J, Ziv M (2004) Ancymidol-enhanced hyperhydric malformation in relation to gibberellin and oxidative stress in liquid-cultured narcissus leaves. In Vitro Cell Dev Biol Plant 40:613–616

    Article  CAS  Google Scholar 

  • Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martinez SE, Smith JL (1996) Some new structural aspects and old controversies concerning the cytochrome b(6) f complex of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:477–508

    Article  PubMed  CAS  Google Scholar 

  • Dawidowicz EA (1987) Dynamics of membrane lipid metabolism and turnover. Annu Rev Biochem 56:43–61

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra P, Ter Reegen H, Kuiper PJC (1990) Relation between relative growth rate, endogenous gibberellins and the response to applied gibberellic acid for Plantago major. Physiol Plant 79:629–634

    Article  PubMed  CAS  Google Scholar 

  • Du H, Wang Z, Yu W, Liu Y, Huang B (2011) Differential metabolic responses of perennial grass Cynodon transvaalensis × Cynodon dactylon (C4) and Poa Pratensis (C3) to heat stress. Physiol Plant 141:251–264

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Dixon D, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Ervin EH, Koski AJ (2001) Kentucky bluegrass growth responses to trinexapac-ethyl, traffic, and nitrogen. Crop Sci 41:1871–1877

    Article  CAS  Google Scholar 

  • Fletcher RA, Hofstra G (1990) Improvement of uniconazole-induced protection in wheat seedlings. J Plant Growth Regul 9:207–212

    Article  CAS  Google Scholar 

  • Frohlich KU, Fries HW, Rudiger M, Erdmann R, Botstein D, Mecke D (1991) Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J Cell Biol 114:443–453

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    Article  PubMed  CAS  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. Proteome Res 6:1451–1460

    Article  CAS  Google Scholar 

  • Heckman NL, Gaussoin RE, Horst GL, Elowsky CG (2005) Growth regulator effects on cellular characteristics of two turfgrass species. Intl Turfgrass Soc Res J 10:857–861

    Google Scholar 

  • Hoagland CR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Circ 347:1–32

    Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Wang Z, Huang B (2010) Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species. Physiol Plant 139:93–106

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Wang Z (2005) Physiological recovery of Kentucky bluegrass from drought stress. Intl Turfgrass Soc Res J 10:867–873

    Google Scholar 

  • Hyndman D, Bauman D, Heredia VV, Penning TM (2003) The aldo-keto reductase superfamily. Chem Biol Interact 143–144:621–631

    Article  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209

    Article  Google Scholar 

  • Jezek P, Engstova H, Zackova M, Vercesi AE, Costa ADT, Arruda P, Garlid KD (1998) Fatty acid cycling mechanism and mitochondrial uncoupling proteins. Biochim Biophys Acta 1365:319–327

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • King RW, Blundell C, Evans LT, Mander LN, Wood JT (1997) Modified gibberellins retard growth of cool-season turfgrasses. Crop Sci 37:1878–1883

    Article  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Kisaki T, Imai A, Tolbert NE (1971) Intracellular localization of enzymes related to photorespiration in green leaves. Plant Cell Physiol 12:267–273

    CAS  Google Scholar 

  • Korol L, Klein JD (2002) Profiles of trinexapac-ethyl- and ABA-induced heat-stable proteins in embryonic axes of wheat seeds. Euphytica 126:77–81

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Costa ADT, Vercesi AE (1998) Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain. FEBS Lett 425:213–216

    Article  PubMed  CAS  Google Scholar 

  • Latterich M, Frohlich KU, Schekman R (1995) Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82:885–893

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    Article  CAS  Google Scholar 

  • Lugan R, Niogret MF, Kervazo L, Larher FR, Kopka J, Bouchereau A (2009) Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function. Plant Cell Environ 32:95–108

    Article  PubMed  CAS  Google Scholar 

  • McCann SE, Huang B (2007) Effects of trinexapac-ethyl foliar application on creeping bentgrass responses to combined drought and heat stress. Crop Sci 47:2121–2128

    Article  CAS  Google Scholar 

  • McCarty LB, Weinbrecht JS, Toler JE, Miller GL (2004) St. Augustine grass response to plant growth retardants. Crop Sci 44:1323–1329

    Article  Google Scholar 

  • McCullough PE, Liu H, McCarty LB, Whitwell T, Toler JE (2006) Growth and nutrient partitioning of ‘TifEagle’ bermudagrass as influenced by nitrogen and trinexapac-ethyl. HortScience 41:453–458

    CAS  Google Scholar 

  • Newsholme SJ, Maleeft BF, Steiner S, Anderson NL, Schwartz LW (2000) Two-dimensional electrophoresis of liver proteins: characterization of a drug-induced hepatomegaly in rats. Electrophoresis 21:2122–2128

    Article  PubMed  CAS  Google Scholar 

  • Nilsen ET, Orcutt DM (1996) Phytohormone and plant response to stress. In: Nilsen ET, Orcutt DM (eds) The physiology of plants under stress-abiotic factors. Wiley, New York, pp 322–361

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Oliver DJ (1994) The glycine decarboxylase complex from plant mitochondria. Annu Rev Plant Physiol Mol Biol 45:323–337

    Article  CAS  Google Scholar 

  • Pannacci E, Covarelli G, Tei F (2004) Evaluation of trinexapac-ethyl for growth regulation of five cool-season turfgrass species. Acta Hortic 661:349–351

    CAS  Google Scholar 

  • Pastore D, Stoppelli MC, Fonzo N, Passarella S (1999) The existence of the K+ channel in plant mitochondria. J Biol Chem 274:26683–26690

    Article  PubMed  CAS  Google Scholar 

  • Pastore D, Fratianni A, Pede SD, Passarella S (2000) Effects of fatty acids, nucleotides and reactive oxygen species on durum wheat mitochondria. FEBS J 470:88–92

    Article  CAS  Google Scholar 

  • Pinhero RG, Fletcher RA (1994) Paclobutrazol and ancymidol protect corn seedlings from high and low temperature stresses. Plant Growth Regul 15:47–53

    Article  CAS  Google Scholar 

  • Qian YL (1998) Trinexapac-ethyl restricts shoot growth and improves quality of ‘Diamond’ zoysia grass under shade. HortScience 33:1019–1022

    CAS  Google Scholar 

  • Rabinovich E, Kerem A, Fröhlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634

    Article  PubMed  CAS  Google Scholar 

  • Sparace SA, Wagner LK, Moore TS (1981) Phosphatidylethanolamine biosynthesis in castor bean endosperm. Plant Physiol 67:922–925

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, pp 134–135

    Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  PubMed  CAS  Google Scholar 

  • Vettakkorumakankav NN, Falk D, Saxena P, Fletcher PA (1999) A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol 40:542–548

    CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–253

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Huang B (2010) Comparative analysis of drought responsive proteins in Kentucky bluegrass cultivars contrasting in drought tolerance. Crop Sci 50:2543–2552

    Article  Google Scholar 

  • Xu C, Xu Y, Huang B (2008) Protein extraction for 2-dimensional gel electrophoresis of proteomic profiling in turfgrass. Crop Sci 48:1608–1614

    Article  CAS  Google Scholar 

  • Xu L, Han L, Huang B (2011) Membrane fatty acid composition and saturation levels associated with leaf dehydration tolerance and post-drought rehydration in Kentucky bluegrass. Crop Sci 51:273–281

    Article  Google Scholar 

  • Yuan L, Xu DQ (2001) Stimulation effect of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean. Photosynth Res 68:39–47

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Schmidt RE (2000) Application of trinexapacethyl and propiconazole enhances superoxide dismutase and photochemical activity in creeping bentgrass. J Am Soc Hortic Sci 125:47–51

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Emily Merewitz, David Jespersen, and Patrick Burgess for critical review of the manuscript. Thanks also go to Rutgers Center of Turfgrass Science for funding support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingru Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Huang, B. Proteins and Metabolites Regulated by Trinexapac-ethyl in Relation to Drought Tolerance in Kentucky Bluegrass. J Plant Growth Regul 31, 25–37 (2012). https://doi.org/10.1007/s00344-011-9216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9216-x

Keywords

Navigation