Skip to main content
Log in

Genome-wide mining, characterization, and development of microsatellite markers in Marsupenaeus japonicus by genome survey sequencing

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

An Erratum to this article was published on 07 March 2017

Abstract

The kuruma prawn, Marsupenaeus japonicus, is one of the most cultivated and consumed species of shrimp. However, very few molecular genetic/genomic resources are publically available for it. Thus, the characterization and distribution of simple sequence repeats (SSRs) remains ambiguous and the use of SSR markers in genomic studies and marker-assisted selection is limited. The goal of this study is to characterize and develop genome-wide SSR markers in M. japonicus by genome survey sequencing for application in comparative genomics and breeding. A total of 326 945 perfect SSRs were identified, among which dinucleotide repeats were the most frequent class (44.08%), followed by mononucleotides (29.67%), trinucleotides (18.96%), tetranucleotides (5.66%), hexanucleotides (1.07%), and pentanucleotides (0.56%). In total, 151 541 SSR loci primers were successfully designed. A subset of 30 SSR primer pairs were synthesized and tested in 42 individuals from a wild population, of which 27 loci (90.0%) were successfully amplified with specific products and 24 (80.0%) were polymorphic. For the amplified polymorphic loci, the alleles ranged from 5 to 17 (with an average of 9.63), and the average PIC value was 0.796. A total of 58 256 SSR-containing sequences had significant Gene Ontology annotation; these are good functional molecular marker candidates for association studies and comparative genomic analysis. The newly identified SSRs significantly contribute to the M. japonicus genomic resources and will facilitate a number of genetic and genomic studies, including high density linkage mapping, genome-wide association analysis, marker-aided selection, comparative genomics analysis, population genetics, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari M J, Al-Ghamdi A, Kumar R, Usmani S, Al-Attal Y, Nuru A, Mohamed A A, Singh K, Dhaliwal H S. 2013. Characterization and gene mapping of a chlorophylldeficient mutant clm1 of Triticum monococcum L. Biologia Plantarum, 57 (3): 442–448.

    Article  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino G L. 2011. Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics, 12: 304.

    Article  Google Scholar 

  • Barzegar R, Peyvast G, Ahadi A M, Rabiei B, Ebadi A A, Babagolzadeh A. 2013. Biochemical systematic, population structure and genetic variability studies among Iranian Cucurbita (Cucurbita pepo L.) accessions, using genomic SSRs and implications for their breeding potential. Biochemical System atics and Ecology, 50: 187–198.

    Article  Google Scholar 

  • Bhargava A, Fuentes F F. 2010. Mutational dynamics of microsatellites. Molecular Biotechnology, 44 (3): 250–66, http://dx.doi.org/10.1007/s12033-009-9230-4.

    Article  Google Scholar 

  • Biswas M K, Xu Q, Mayer C, Deng X X, Niedz R P. 2014. Genome wide characterization of short tandem repeat markers in sweet orange (Citrus sinensis ). PLoS One, 9 (8): e104182, http://dx.doi.org/10.1371/journal.pone. 0104182.

    Article  Google Scholar 

  • Bohra A, Dubey A, Saxena R K, Penmetsa R V, Poornima K N, Kumar N, Farmer A D, Srivani G, Upadhyaya H D, Gothalwal R, Ramesh S, Singh D, Saxena K, Kishor P B K, Singh N K, Town C D, May G D, Cook D R, Varshney R K. 2011. Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC Plant Biology, 11: 56.

    Article  Google Scholar 

  • Bohra A, Jha U C, Kavi Kishor P B, Pandey S, Singh N P. 2014. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnology Advances, 32 (8): 1410–1428.

    Article  Google Scholar 

  • Bruford M W, Wayne R K. 1993. Microsatellites and their application to population genetic studies. Current Opinion in Genetics & Development, 3 (6): 939–943.

    Article  Google Scholar 

  • Cardle L, Ransay L, Milbourne D, Macaulay M, Marshall D, Waugh R. 2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 156 (2): 847–854.

    Google Scholar 

  • Castoe T A, Polle A W, Gu W J, de Koning A P J, Daza L M, Smith E N, Pollock D D. 2010. Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Molecular Ecology Resource, 10 (2): 341–347.

    Article  Google Scholar 

  • Castoe T A, Poole A W, de Koning A P J, Jones K L, Tomback D F, Oyler-McCance S J, Fike J A, Lance S L, Streicher J W, Smith E N, Pollock D D, Hansson B. 2012. Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake. PLoS One, 7 (2): e30953, http://dx.doi.org/10.1371/journal.pone.0030953.

    Article  Google Scholar 

  • Cavagnaro P F, Senalik D A, Yang L M, Simon P W, Harkins T T, Kodira C D, Huang S W, Weng Y Q. 2010. Genomewide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 11: 569.

    Article  Google Scholar 

  • Cheng L, Liao X, Yu X, Tong J. 2007. Development of ESTSSRs by an efficient FIASCO-based strategy: a case study in rare minnow (Gobiocyrpis Rarus). Animal Biotechnology, 18 (3): 143–152.

    Article  Google Scholar 

  • Cruz F, Pérez M, Prese P. 2005. Distribution and abundance of microsatellites in the genome of bivalves. Gene, 346: 241–247.

    Article  Google Scholar 

  • Doulati-Baneh H, Mohammadi S A, Labra M. 2013. Genetic structure and diversity analysis in Vitis vinifera L. cultivars from Iran using SSR markers. Scientia Horticulturae, 160: 29–36.

    Article  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit R J. 2011. Current trends in microsatellite genotyping. Molecular Ecology Resource, 11 (4): 591–611.

    Article  Google Scholar 

  • Guo E M, Cui Z X, Wu D H, Hui M, Liu Y, Wang H X. 2013. Genetic structure and diversity of Portunus trituberculatus in Chinese population revealed by microsatellite markers. Biochemical System atics and Ecology, 50: 313–321.

    Article  Google Scholar 

  • Hancock J M. 1995. The contribution of slippage-like processes to genome evolution. Journal of Molecular Evolution, 41 (6): 1038–1047.

    Article  Google Scholar 

  • Hewitt D R, Duncan P F. 2001. Effect of high water temperature on the survival, moulting and food consumption of Penaeus (Marsupenaeus) japonicus (Bate, 1888). Aquaculture Research, 32 (4): 305–313.

    Article  Google Scholar 

  • Hoffman J I, Nichols H J. 2011. A novel approach for mining polymorphic microsatellite markers in silico. PLoS One, 6: e23283, http://dx.doi.org/10.1371/journal.pone. 0023283.

    Article  Google Scholar 

  • Holthuis L B. 1980. FAO Species Catalogue. Vol. 1. Shrimps and Prawns of the World. An Annotated Catalogue of Species of Interest to Fisheries. FAO Fisheries Synopsis, No. 125, 1. Food and Agricultural Organization of the United Nations, Rome. 271 p.

    Google Scholar 

  • Hosseini A, Ranade S H, Ghosh I, Khandekar P. 2008. Simple sequence repeats in different genome sequences of Shigella and comparison with high GC and AT-rich genomes. DNA Sequence, 19 (3): 167–176, http://dx.doi. org/10.1080/10425170701461730.

    Article  Google Scholar 

  • Iranawati F, Jung H, Chand V, Hurwood D A, Mather P B. 2012. Analysis of genome survey sequences and SSR marker development for Siamese mud carp, H enicorhynchus siamensis, using 454 pyrosequencing. International Journal of Molecular Sciences, 13 (12): 10807–10827.

    Article  Google Scholar 

  • Jarne P, Lagodav P J L. 1996. Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution, 11 (10): 424–429.

    Article  Google Scholar 

  • Jennings T N, Knaus B J, Mullins T D, Haiq S M, Cronn R C. 2011. Multiplexed microsatellite recovery using massively parallel sequencing. Molecular Ecology Resource, 11 (6): 1060–1067.

    Article  Google Scholar 

  • Ji P F, Liu G M, Xu J, Wang X M, Li J T, Zhao Z X, Zhang X F, Zhang Y, Xu P, Sun X W, Liu Z J. 2012. Characterization of common carp transcriptome: sequencing, de novo assembly, annotation and comparative genomics. PLoS One, 7 (4): e35152.

    Article  Google Scholar 

  • Jiao W Q, Fu X T, Dou J Z, Li H D, Su H L, Mao J X, Yu Q, Zhang L L, Hu X L, Huang X T, Wang Y F, Wang S, Bao Z M. 2014. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc. DNA Research, 21 (1): 85–101.

    Article  Google Scholar 

  • Jurka J, Pethiyagod C. 1995. Simple repetitive DNA sequences from primates: compilation and analysis. Journal of Molecular Evolution, 40 (2): 120–126.

    Article  Google Scholar 

  • Kashi Y, King D, Soller M. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics, 13 (2): 74–78.

    Article  Google Scholar 

  • Kofler R, Schlotterer C, Lelley T. 2007. SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics, 23 (13): 1683–1685.

    Article  Google Scholar 

  • Kohany O, Gentles A J, Hankus L, Jurka J. 2006. Annotation, submission and screening of repetitive elements in repbase: repbase submitter and censor. BMC Bioinformatics, 7: 474.

    Article  Google Scholar 

  • Králová-Hromadová I, Minárik G, Bazsalovicsová E, Mikulícek P, Oravcová A, Pálková L, Hanzelová V. 2015. Development of microsatellite markers in Caryophyllaeus laticeps (Cestoda: Caryophyllidea), monozoic fish tapeworm, using next-generation sequencing approach. Parasitology Research, 114 (2): 721–726.

    Article  Google Scholar 

  • Kumpatla S P, Mukhopadhyay S. 2005. Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome, 48 (6): 985–998.

    Article  Google Scholar 

  • Lee G A, Sung J S, Lee S Y, Chung J W, Yi J Y, Kim Y G, Lee M C. 2014. Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Molecular Ecology Resource, 14 (1): 69–78, http://dx.doi.org/10.1111/1755-0998.12146.

    Article  Google Scholar 

  • Li R Q, Fan W, Tian G et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature, 463 (7279): 311–317.

    Article  Google Scholar 

  • Liu H F, Li S Q, Hu P, Zhang Y Y, Zhang J B. 2013. Isolation and characterization of EST-based microsatellite markers for Scatophagus argus based on transcriptome analysis. Conservation Genetic s Research, 5 (2): 483–485, http:// dx.doi.org/10.1007/s12686-012-9833-0.

    Article  Google Scholar 

  • Martins W S, Lucas D C S, Neves K F S, Bertioli D J. 2009. WebSat-A web software for microsatellite marker development. Bioinformation, 3 (6): 282–283.

    Article  Google Scholar 

  • Miller M R, Dunhamv J P, Amores A, Cresko W A, Johnson E A. 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17 (2): 240–248.

    Article  Google Scholar 

  • Nagy I, Stágel A, Sasvári Z, Röder M, Ganal M. 2007. Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.). Genome, 50 (7): 668–688.

    Article  Google Scholar 

  • Nybom H, Weising K, Rotter B. 2014. DNA fingerprinting in botany: past, present, future. Invest igative Genetic, 5: 1, http://dx.doi.org /10.1186/2041-2223-5-1.

    Article  Google Scholar 

  • Parobek C M, Jiang L Y, Patel J C, Alvarez-Martínez M J, Miro J M, Worodria W, Andama A, Fong S, Huang L, Meshnick S R, Taylor S M, Juliano J J. 2014. Multilocus microsatellite genotyping array for investigation of genetic epidemiology of Pneumocystis jirovecii. Journal of Clinical Microbiology, 52 (5): 1391–1399.

    Article  Google Scholar 

  • Rowe H C, Renaut S, Guggisberg A. 2011. RAD in the realm of next-generation sequencing technologies. Molecular Ecology, 20 (17): 3499–3502.

    Google Scholar 

  • Schlötterer C, Tautz D. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 20 (2): 211–215.

    Article  Google Scholar 

  • Shikano T, Ramadevi J, Shimada Y, Merilä J. 2010. Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (Pungitius pungitius ). BMC Genomics, 11: 334, http://dx.doi.org/10.1186/1471-2164-11-334.

    Article  Google Scholar 

  • Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S. 2010. An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theoretical and Applied Genetics, 121 (4): 731–739.

    Article  Google Scholar 

  • Sinden R R. 1999. Biological implications of the DNA structures associated with disease-causing triplet repeats. American Journal of Human Genetic, 64 (2): 346–353.

    Article  Google Scholar 

  • Smee M R, Pauchet Y, Wilkinson P, Wee B, Singer M C, ffrench-Constant R H, Hodgson D J, Mikheyev A S. 2013. Microsatellites for the marsh fritillary butterfly: de novo transcriptome sequencing, and a comparison with amplified fragment length polymorphism (AFLP) markers. PLoS One, 8 (1): e54721.

    Article  Google Scholar 

  • Somridhivej B, Wang S L, Sha Z X, Liu H, Quilang J, Xu P, Li P, Hu Z L, Liu Z J. 2008. Characterization, polymorphism assessment, and database construction for microsatellites from BAC end sequences of channel catfish (Ictalurus punctatus ): a resource for integration of linkage and physical maps. Aquaculture, 275 (1-4): 76–80.

    Article  Google Scholar 

  • Stàgel A, Portis E, Toppino L, Rotino G L, Lanteri S. 2008. Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics, 9: 357.

    Article  Google Scholar 

  • Strong W B, Nelson R G. 2000. Preliminary profile of the Cryptosporidium parvum genome: An expressed sequence tag and genome survey sequence analysis. Molecular and Biochemical Parasitology, 107 (1): 1–32.

    Article  Google Scholar 

  • Subramanian S, Mishra R K, Singh L. 2003. Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biology, 4: R13, http://dx.doi.org/10.1186/gb-2003-4-2-r13.

    Article  Google Scholar 

  • Tadano R, Nunome M, Mizutani M, Kawahara-Miki R, Fujiwara A, Takahashi S, Kawashima T, Nirasawa K, Ono T, Kono T, Matsuda Y. 2014. Cost-effective development of highly polymorphic microsatellite in Japanese quail facilitated by next-generation sequencing. Animal Genetics, 45 (6): 881–884.

    Article  Google Scholar 

  • Tanguy A, Bierne N, Saavedra C et al. 2008. Increasing genomic information in bivalves through new EST collections in four species: development of new genetic markers for environmental studies and genome evolution. Gene, 408 (1-2): 27–36.

    Article  Google Scholar 

  • Tautz D, Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12 (10): 4127–4138.

    Article  Google Scholar 

  • Tautz D, Trick M, Dover G A. 1986. Cryptic simplicity in DNA is a major source of genetic variation. Nature, 322 (6080): 652–656.

    Article  Google Scholar 

  • Thanh N M, Jung H, Lyons R E, Chand V, Tuan N V, Thu V T M, Mather P. 2014. A transcriptomic analysis of striped catfish (Pangasianodon hypophthalmus) in response to salinity adaptation: De novo assembly, gene annotation and marker discovery. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 10: 52–63.

    Google Scholar 

  • Tóth G, Gáspári Z, Jurka J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 10 (7): 967–981.

    Article  Google Scholar 

  • Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats A C, Vagner S. 2003. Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biology of the Cell, 95 (4): 169–178, http://dx.doi.org/10. 1016/S0248-4900(03)00033-9.

    Article  Google Scholar 

  • Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, Sraphet S, Yoocha T, Sangsrakru D, Chanprasert J, Ngamphiw C, Jomchai N, Therawattanasuk K, Tangphatsornruang S. 2011. Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Research, 18 (6): 471–482.

    Article  Google Scholar 

  • Turanov A A, Lobanov A V, Fomenko D E, Morrison H G, Sogin M L, Klobutcher L A, Hatfield D L, Gladyshev V N. 2009. Genetic code supports targeted insertion of two amino acids by one codon. Science, 323 (5911): 259–261, http://dx.doi.org/10.1126/science.1164748.

    Article  Google Scholar 

  • Varshney R K, Graner A, Sorrells M E. 2005. Genic microsatellite markers in plants: features and applications. Trends in Biotechnology, 23 (1): 48–55.

    Article  Google Scholar 

  • Vukosavljev M, Di Guardo M, van de Weg W E, Arens P, Smulders M J M. 2012. Quantification of Allele Dosage in tetraploid Roses. Science MED (Bologna), 3: 277–282.

    Google Scholar 

  • Vukosavljev M, Zhang J, Esselink G D, van’t Westende W P C, Cox P, Visser R G F, Arens P, Smulders M J M. 2013. Genetic diversity and differentiation in roses: a garden rose perspective. Science Horticulturae, 162: 320–332, http://dx.doi.org/10.1016/j.scienta.2013.08.015.

    Article  Google Scholar 

  • Wahba A J, Gardner R S, Basilio C, Miller R S, Speyer J F, Lengyel P. 1963. Synthetic polynucleotides and the amino acid code. VIII. Proceedings of the National Academy of Sciences of the United States of America, 49: 116–122.

    Article  Google Scholar 

  • Wang H X, Huan P, Lu X, Liu B Z. 2011. Mining of EST-SSR markers in clam Meretrix meretrix larvae from 454 shotgun transcriptome. Genes & Genetic System, 86 (3): 197–205.

    Article  Google Scholar 

  • Wang J Y, Song X M, Li Y, Hou X L. 2013. In-silico detection of EST-SSR markers in three Brassica species and transferability in B. rapa. The Journal of Horticultural Science & Biotechnology, 88 (2): 135–140.

    Article  Google Scholar 

  • Wang W J, Kong J, Dong S R, Luan S, Wang Q Y. 2006. Genetic mapping of the Chinese shrimp Fenneropenaeus chinensis using AFLP markers. Acta Zoologica Sinica, 52 (3): 575–584. (in Chinese with English abstract)

    Google Scholar 

  • Weber J L, Wong C. 1993. Mutation of human short tandem repeats. Human Molecular Genetics, 2 (8): 1123–1128.

    Article  Google Scholar 

  • Xu P X, Wu X H, Luo J, Wang B G, Liu Y H, Ehlers J D, Wang S, Lu Z F, Li G J. 2011. Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding. BMC Genomics, 12: 467.

    Article  Google Scholar 

  • Xu P X, Xu S Z, Wu X H, Tao Y, Wang B G, Wang S, Qin D H, Lu Z F, Li G J. 2014. Population genomic analyses from low-coverage RAD-Seq data: a case study on the nonmodel cucurbit bottle gourd. The Plant Journal, 77 (3): 430–442, http://dx.doi.org/10.1111/tpj.12370.

    Article  Google Scholar 

  • Yuan S X, Ge L, Liu C, Ming J. 2013. The development of EST-SSR markers in Lilium regale and their cross-amplification in related species. Euphytica, 189 (3): 393–419.

    Article  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T. 2002. Strategies for microsatellite isolation: a review. Molecular Ecology, 11 (1): 1–16.

    Article  Google Scholar 

  • Zeng S H, Xiao G, Guo J, Fei Z J, Xu Y Q, Roe B A, Wang Y. 2010. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics, 11: 94.

    Article  Google Scholar 

  • Zhou W, Hu Y Y, Sui Z H, Fu F, Wang J G, Chang L P, Guo W H, Li B B, Sun H. 2013. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing. PLoS One, 8 (7): e69909, http://dx.doi.org/ 10.1371/journal.pone.0069909.

    Article  Google Scholar 

  • Zitouna N, Marghali S, Gharbi M, Chennaoui-Kourda H, Haddioui A, Trifi-Farah N. 2013. Mediterranean Hedysarum phylogeny by transferable microsatellites from Medicago. Biochemical System atics and Ecology, 50: 129–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Kong  (孔杰).

Additional information

Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA10A409)

LU Xia and LUAN Sheng contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s00343-017-7466-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Luan, S., Kong, J. et al. Genome-wide mining, characterization, and development of microsatellite markers in Marsupenaeus japonicus by genome survey sequencing. Chin. J. Ocean. Limnol. 35, 203–214 (2017). https://doi.org/10.1007/s00343-016-5250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5250-7

Keywords

Navigation