Skip to main content

Advertisement

Log in

A cost-effective high-flux source of cold ytterbium atoms

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a cost-effective way to prepare high-flux slow ytterbium atoms with extremely low-power 399-nm light suitable for the production of quantum degenerate ytterbium gases. By collimating an atomic beam through an array of micro-capillary tubes, we obtain a bright atomic beam through the Zeeman slower operating at low light power of only 15 mW for the source. We achieve the loading rate of 2 × 107 s−1 into the intercombination magneto-optical trap (MOT) and a sufficient steady-state MOT atom number of 2 × 108 for 174Yb atoms. Our apparatus highlights an efficient method to obtain slow ytterbium atoms using a simple low-power 399-nm laser system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates, A.D. Ludlow, An atomic clock with 10(-18) instability. Science 341(6151), 1215–1218 (2013)

    Article  ADS  Google Scholar 

  2. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464(7), 45–53 (2010)

    Article  ADS  Google Scholar 

  3. A.J. Daley, Quantum computing and quantum simulation with group-II atoms. Quantum Inf. Process. 10(6), 865–884 (2011)

    Article  MathSciNet  Google Scholar 

  4. G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schäfer, H. Hui, X.-J. Liu, J. Catani, C. Sias, M. Inguscio, L. Fallani, A one-dimensional liquid of fermions with tunable spin. Nat. Phys. 10(3), 198–201 (2014)

    Article  Google Scholar 

  5. G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, Direct observation of coherent interorbital spin-exchange dynamics. Phys. Rev. 113, 120402 (2014)

    Google Scholar 

  6. F. Scazza, C. Hofrichter, M. Höfer, P.C. De Groot, I. Bloch, S. Fölling, Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions. Nat. Phys. 10(10), 779–784 (2014)

    Google Scholar 

  7. M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, L. Fallani, Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349(6255), 1510–1513 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, Y. Takahashi, Topological Thouless pumping of ultracold fermions. Nat. Phys. 12(4), U126–296 (2016)

    Article  Google Scholar 

  9. B. Song, C. He, S. Zhang, E. Hajiyev, W. Huang, X.-J. Liu, G.-B. Jo, Spin–orbit coupled two-electron Fermi gases of ytterbium atoms. arXiv:1608.00478 (2016)

  10. T. Fukuhara, Y. Takasu, M. Kumakura, Y. Takahashi, Degenerate Fermi gases of ytterbium. Phys. Rev. Lett. 98(3), 030401 (2007)

    Article  ADS  Google Scholar 

  11. A.H. Hansen, A.Y. Khramov, W.H. Dowd, A.O. Jamison, B. Plotkin-Swing, R.J. Roy, S. Gupta, Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap. Phys. Rev. A 87(1), 013615 (2013)

    Article  ADS  Google Scholar 

  12. W. Phillips, H. Metcalf, Laser deceleration of an atomic beam. Phys. Rev. Lett. 48(9), 596–599 (1982)

    Article  ADS  Google Scholar 

  13. N. Ramsey, Molecular Beams (Oxford University Press, Oxford, 1985)

    Google Scholar 

  14. S. Dorscher, A. Thobe, B. Hundt, A. Kochanke, R. Le Targat, P. Windpassinger, C. Becker, K. Sengstock, Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup. Rev. Sci. Instrum. 84(4), 043109 (2013)

    Article  ADS  Google Scholar 

  15. V.D. Vaidya, J. Tiamsuphat, S.L. Rolston, J.V. Porto, Degenerate Bose--Fermi mixtures of rubidium and ytterbium. Phys. Rev. A 92, 043604 (2015)

    Article  ADS  Google Scholar 

  16. B. Hemmerling, G.K. Drayna, E. Chae, A. Ravi, J.M. Doyle, Buffer gas loaded magneto-optical traps for Yb, Tm, Er and Ho. New J. Phys. 16(6), 063070 (2014)

    Article  ADS  Google Scholar 

  17. T. Kuwamoto, K. Honda, Y. Takahashi, T. Yabuzaki, Magneto-optical trapping of Yb atoms using an intercombination transition. Phys. Rev. A 60(2), R745 (1999)

    Article  ADS  Google Scholar 

  18. A.H. Hansen, A. Khramov, W.H. Dowd, A.O. Jamison, V.V. Ivanov, S. Gupta, Quantum degenerate mixture of ytterbium and lithium atoms. Phys. Rev. A 84(1), 011606 (2011)

    Article  ADS  Google Scholar 

  19. Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, Y. Takahashi, Spin-singlet Bose–Einstein condensation of two-electron atoms. Phys. Rev. Lett. 91(4), 40404 (2003)

    Article  ADS  Google Scholar 

  20. J. Lee, J.H. Lee, J. Noh, J. Mun, Core-shell magneto-optical trap for alkaline-earth-metal-like atoms. Phys. Rev. A 91(5), 053405 (2015)

    Article  ADS  Google Scholar 

  21. R. Roy, A. Green, R. Bowler, S. Gupta, Rapid Cooling to quantum degeneracy with dynamically shaped atom traps. Phys. Rev. A 93, 043403. doi:10.1103/PhysRevA.93.043403 (2016)

    Article  ADS  Google Scholar 

  22. S.L. Kemp, K.L. Butler, R. Freytag, S.A. Hopkins, E.A. Hinds, M.R. Tarbutt, S.L. Cornish, Production and characterization of a dual species magneto-optical trap of cesium and ytterbium. Rev. Sci. Instrum. 87(2), 023105 (2016)

    Article  ADS  Google Scholar 

  23. S.A. Hopkins, K. Butler, A. Guttridge, S. Kemp, R. Freytag, E.A. Hinds, M.R. Tarbutt, S.L. Cornish, A versatile dual-species Zeeman slower for caesium and ytterbium. Rev. Sci. Instrum. 87(4), 043109 (2016)

    Article  ADS  Google Scholar 

  24. K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, T. Yabuzaki, Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms. Jpn. J. Appl. Phys. 42(8), 5059 (2003)

    Article  ADS  Google Scholar 

  25. B. Saxberg, B. Plotkin-Swing, S. Gupta, Active stabilization of a diode laser injection lock. Rev. Sci. Instrum. 87(6), 063109 (2016)

    Article  ADS  Google Scholar 

  26. T. Hosoya, M. Miranda, R. Inoue, M. Kozuma, Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms. Rev. Sci. Instrum. 86(7), 073110 (2015)

    Article  ADS  Google Scholar 

  27. K.J. Ross, B. Sonntag, High temperature metal atom beam sources. Rev. Sci. Instrum. 66(9), 4409–4433 (1995)

    Article  ADS  Google Scholar 

  28. H.C.W. Beijerinck, N.F. Verster, Velocity distribution and angular distribution of molecular beams from multichannel arrays. J. Appl. Phys. 46(5), 2083–2091 (1975)

    Article  ADS  Google Scholar 

  29. M. Schioppo, N. Poli, M. Prevedelli, St Falke, St Falke, Ch. Lisdat, U. Sterr, G.M. Tino, A compact and efficient strontium oven for laser-cooling experiments. Rev. Sci. Instrum. 83(10), 103101 (2012)

    Article  ADS  Google Scholar 

  30. R. Senaratne, S.V. Rajagopal, Z.A. Geiger, K.M. Fujiwara, V. Lebedev, D.M. Weld, Effusive atomic oven nozzle design using an aligned microcapillary array. Rev. Sci. Instrum. 86(2), 023105 (2015)

    Article  ADS  Google Scholar 

  31. M. Prentiss, A. Cable, N.P. Bigelow, Effect of transverse guiding on the velocity distribution of an atomic beam. JOSA B 6(11), 2155–2158 (1989)

    Article  ADS  Google Scholar 

  32. H. Metcalf, P. van der Straten, Cooling and trapping of neutral atoms. Phys. Rep. 244(4 and 5), 203 (1994)

    Article  ADS  Google Scholar 

  33. V.S. Bagnato, G.P. Lafyatis, A. Martin, K. Helmerson, Laser deceleration and velocity bunching of a neutral sodium beam. JOSA B 6(11), 2171 (1989)

    Article  ADS  Google Scholar 

  34. S.K. Mayer, N.S. Minarik, M.H. Shroyer, D.H. Mclntyre, Zeeman-tuned slowing of rubidium using \(\sigma +\) and \(\sigma -\) polarized light. Opt. Commun. 210(3), 259–270 (2002)

    Article  ADS  Google Scholar 

  35. C.Z. Mooney, Monte Carlo Simulation (SAGE Publications, New York, 1997)

    Book  MATH  Google Scholar 

  36. S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, Y. Takahashi, Realization of a SU(2) \(\times\) SU(6) system of fermions in a cold atomic gas. Phys. Rev. Lett. 105(19), 190401 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Ting Sam Wong, Songhao Zhu and Kwan Hon for contributions to the experimental system. The work was supported by the Hong Kong Research Grants Council (Project No. ECS26300014 and GRF16300215) and the Croucher Innovation Grants, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyu-Boong Jo.

Additional information

Bo Song, Yueyang Zou, Shanchao Zhang have contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Zou, Y., Zhang, S. et al. A cost-effective high-flux source of cold ytterbium atoms. Appl. Phys. B 122, 250 (2016). https://doi.org/10.1007/s00340-016-6523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6523-8

Keywords

Navigation