Skip to main content
Log in

Laser-cooled ytterbium-ion microwave frequency standard

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the development of a trapped-ion, microwave frequency standard based on the 12.6 GHz hyperfine transition in laser-cooled ytterbium-171 ions. The entire system fits into a 6U 19-in. rack unit \((51\times 49\times 28\,\mathrm{{cm}})\) and comprises laser, electronics, and physics package subsystems. As a first step towards a full evaluation of the system capability, we have measured the frequency instability of our system which is \(3.6\times 10^{-12}/\surd \tau \) for averaging times between 30 and \(1500\,\mathrm{{s}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.S. Cutler, Fifty years of commercial caesium clocks. Metrologia 42(3), S90–S99 (2005)

    ADS  Google Scholar 

  2. J. Camparo, The rubidium atomic clock and basic research. Phys. Today 60, 33–39 (2007)

    Google Scholar 

  3. Microsemi Corporation, SA.45s CSAC datasheet (2019). https://www.microsemi.com/document-portal/doc_download/133305-sa-45s-csac-datasheet

  4. Y.Y. Jau, H. Partner, P.D. Schwindt, J.D. Prestage, J.R. Kellogg, N. Yu, Low-power, miniature \(^{171}\rm Yb\) ion clock using an ultra-small vacuum package. Appl. Phys. Lett. 101(25), 253518 (2012)

    ADS  Google Scholar 

  5. P.D. Schwindt, Y.Y. Jau, H. Partner, A. Casias, A.R. Wagner, M. Moorman, R.P. Manginell, J.R. Kellogg, J.D. Prestage, A highly miniaturized vacuum package for a trapped ion atomic clock. Rev. Sci. Instrum. 87(5), 053112 (2016)

    ADS  Google Scholar 

  6. R.L. Tjoelker, J.D. Prestage, E.A. Burt, P. Chen, Y.J. Chong, S.K. Chung, W. Diener, T. Ely, D.G. Enzer, H. Mojaradi, C. Okino, M. Pauken, D. Robison, B.L. Swenson, B. Tucker, R. Wang, Mercury ion clock for a NASA technology demonstration mission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(7), 1034–1043 (2016)

    Google Scholar 

  7. J.C. Camparo, C.M. Klimcak, S.J. Herbulock, Frequency equilibration in the vapor-cell atomic clock. IEEE Trans. Instrum. Meas. 54(5), 1873–1880 (2005)

    Google Scholar 

  8. Y.Y. Jau, J.D. Hunker, P.D.D. Schwindt, F-state quenching with \({{\rm CH}}_{4}\) for buffer-gas cooled \(^{171}{\rm Yb}^{+}\) frequency standard. AIP Adv. 5(11), 117209 (2015)

    ADS  Google Scholar 

  9. R. Warrington, P. Fisk, M. Wouters, M. Lawn, Temperature of laser-cooled \(^{171}{{\rm Yb}}^{+}\) ions and application to a microwave frequency standard. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1166–1174 (2002)

    Google Scholar 

  10. S. J. Park, P. J. Manson, M. J. Wouters, R. B. Warrington, M. A. Lawn, P. T. H. Fisk, “\(^{171}\rm Yb^{+}\) Microwave Frequency Standard,” in 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, pp. 613–616 (2007)

  11. T.P. Heavner, E.A. Donley, F. Levi, G. Costanzo, T.E. Parker, J.H. Shirley, N. Ashby, S. Barlow, S.R. Jefferts, First accuracy evaluation of NIST-F2. Metrologia 51(3), 174 (2014)

    ADS  Google Scholar 

  12. J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M.E. Tobar, R. Li, K. Gibble, A. Clairon, S. Bize, Progress in atomic fountains at LNE-SYRTE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 391–410 (2012)

    Google Scholar 

  13. K. Szymaniec, S.E. Park, G. Marra, W. Chałupczak, First accuracy evaluation of the NPL-CsF2 primary frequency standard. Metrologia 47(4), 363–376 (2010)

    ADS  Google Scholar 

  14. R. Warrington, P. Fisk, M. Wouters, M. Lawn, C. Coles, “The CSIRO trapped \(^{171}\rm Yb^{+}\) ion clock: improved accuracy through laser-cooled operation,” in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum, 1999 and the IEEE International Frequency Control Symposium, 1999, pp. 125–128, (1999)

  15. P. Phoonthong, M. Mizuno, K. Kido, N. Shiga, Determination of the absolute microwave frequency of laser-cooled \(^{171}{{\rm Yb}}^{+}\). Appl. Phys. B 117(2), 673–680 (2014)

    Google Scholar 

  16. S. Mulholland, Development of a portable laser-cooled ytterbium ion microwave atomic clock. PhD thesis, University of Oxford (2018)

  17. S. Olmschenk, D. Hayes, D.N. Matsukevich, P. Maunz, D.L. Moehring, K.C. Younge, C. Monroe, Measurement of the lifetime of the \(6p {^{2}P}_{1/2}^{o}\) level of \({\rm Yb}^{+}\). Phys. Rev. A 80, 022502 (2009)

    ADS  Google Scholar 

  18. N. Yu, L. Maleki, Lifetime measurements of the 4f145d metastable states in single ytterbium ions. Phys. Rev. A 61(2), 022507 (2000)

    ADS  Google Scholar 

  19. M. Roberts, P. Taylor, G.P. Barwood, P. Gill, H.A. Klein, W.R.C. Rowley, Observation of an electric octupole transition in a single ion. Phys. Rev. Lett. 78(10), 1876–1879 (1997)

    ADS  Google Scholar 

  20. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Single-ion atomic clock with \(3\times {}{10}^{-18}\) systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016)

    ADS  Google Scholar 

  21. R.M. Godun, P.B.R. Nisbet-Jones, J.M. Jones, S.A. King, L.A.M. Johnson, H.S. Margolis, K. Szymaniec, S.N. Lea, K. Bongs, P. Gill, Frequency ratio of two optical clock transitions in \(^{171}{\rm Yb}^{+}\) and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113(210801), 1–5 (2014)

    Google Scholar 

  22. P. Fisk, M. Sellars, M. Lawn, C. Coles, Performance of a prototype microwave frequency standard based on laser-detected, trapped 171 Yb+ ions. Appl. Phys B Lasers Opt. 60(6), 519–527 (1995)

    ADS  Google Scholar 

  23. D.J. Berkeland, M.G. Boshier, Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems. Phys. Rev. A 65, 033413 (2002)

    ADS  Google Scholar 

  24. J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstäubler, Precise determination of micromotion for trapped-ion optical clocks. J. Appl. Phys. 118(10), 1–13 (2015)

    Google Scholar 

  25. D.R. Denison, Operating parameters of a quadrupole in a grounded cylindrical housing. J. Vacuum Sci. Technol. 8(1), 266–269 (1971)

    ADS  Google Scholar 

  26. J. Pedregosa, C. Champenois, M. Houssin, M. Knoop, Anharmonic contributions in real RF linear quadrupole traps. Int. J. Mass Spectrom. 290(2–3), 100–105 (2010)

    Google Scholar 

  27. G. Werth, V. N. Gheorghe, F. G. Major, Charged Particle Traps II: Applications, Springer Series on Atomic, Optical, and Plasma Physics, vol 54 (Springer, 2009)

  28. S. Mulholland, H.A. Klein, G.P. Barwood, S. Donnellan, P.B.R. Nisbet-Jones, G. Huang, G. Walsh, P.E.G. Baird, P. Gill, Compact laser system for a laser-cooled ytterbium ion microwave frequency standard. Rev. Sci. Instrum. 90(3), 033105 (2019)

    ADS  Google Scholar 

  29. S. Rauch, J. Sacher, Compact bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 nm. IEEE Photon. Technol. Lett. 27, 1737–1740 (2015)

    ADS  Google Scholar 

  30. K.G. Libbrecht, J.L. Hall, A low-noise high-speed diode laser current controller. Rev. Sci. Instrum. 64(8), 2133–2135 (1993)

    ADS  Google Scholar 

  31. C.J. Erickson, M. Van Zijll, G. Doermann, D.S. Durfee, An ultrahigh stability, low-noise laser current driver with digital control. Rev. Sci. Instrum. 79(7), 073107 (2008)

    ADS  Google Scholar 

  32. Y.-Y. Jau, F.M. Benito, H. Partner, P.D.D. Schwindt, Low power high-performance radio frequency oscillator for driving ion traps. Rev. Sci. Instrum. 82, 023118 (2011)

    ADS  Google Scholar 

  33. G.P. Barwood, P. Gill, G. Huang, H.A. Klein, Automatic laser control for a \(^{88}{{\rm Sr}}^{+}\) optical frequency standard. Meas. Sci. Technol. 23(5), 055201 (2012)

    ADS  Google Scholar 

  34. K. Toyoda, A. Miura, S. Urabe, K. Hayasaka, M. Watanabe, Laser cooling of calcium ions by use of ultraviolet laser diodes: significant induction of electron-shelving transitions. Opt. Lett. 26(23), 1897 (2001)

    ADS  Google Scholar 

  35. F. Riehle, Frequency Standards: Basics and Applications (Wiley, New York, 2005)

    Google Scholar 

  36. C. F. A. Baynham, Frequency metrology at the \(10^{-18}\) level with an ytterbium ion optical clock. PhD thesis, University of Oxford (2018)

  37. M. Tomza, K. Jachymski, R. Gerritsma, A. Negretti, T. Calarco, Z. Idziaszek, P. S. Julienne, “Cold hybrid ion-atom systems,” arXiv:1708.07832 (2017)

  38. S. A. King, Sub-hertz optical frequency metrology using a single ion of 171 Yb +. PhD thesis, University of Oxford (2012)

  39. K. Sugiyama, J. Yoda, Disappearance of \({\rm Yb}^{+}\) in excited states from RF trap by background gases. Japan. J. Appl. Phys. 34(5A), L584–L586 (1995)

    ADS  Google Scholar 

  40. J. Vanier, C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, Bristol, 1989)

    Google Scholar 

  41. H.C.J. Gan, G. Maslennikov, K.-W. Tseng, T.R. Tan, R. Kaewuam, K.J. Arnold, D. Matsukevich, M.D. Barrett, Oscillating-magnetic-field effects in high-precision metrology. Phys. Rev. A 98, 032514 (2018)

    ADS  Google Scholar 

  42. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, Laser-cooled mercury ion frequency standard. Phys. Rev. Lett. 80(1523), 2089–2092 (1998)

    ADS  Google Scholar 

  43. R.G. DeVoe, J. Hoffnagle, R.G. Brewer, Role of laser damping in trapped ion crystals. Phys. Rev. A 39, 4362–4365 (1989)

    ADS  Google Scholar 

  44. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83(10), 5025–5033 (1998)

    ADS  Google Scholar 

  45. P.T.H. Fisk, M.J. Sellars, M.A. Lawn, G. Coles, Accurate measurement of the 12.6 GHz “clock” transition in trapped \(^{171}{{\rm Yb}}\) ions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 344–354 (1997)

    Google Scholar 

  46. C. Tamm, D. Schnier, A. Bauch, Radio-frequency laser double-resonance spectroscopy of trapped \(^{171}{{\rm Yb}}\) ions and determination of line shifts of the ground-state hyperfine resonance. Appl. Phys. B 60(1), 19–29 (1995)

    ADS  Google Scholar 

  47. E.J. Angstmann, V.A. Dzuba, V.V. Flambaum, Frequency shift of hyperfine transitions due to blackbody radiation. Phys. Rev. A 74(023405), 1–8 (2006)

    Google Scholar 

  48. U.I. Safronova, M.S. Safronova, Third-order relativistic many-body calculations of energies, transition rates, hyperfine constants, and blackbody radiation shift in \({^{171}{{\rm Y}}{{\rm b}}}^{+}\). Phys. Rev. A 79, 022512 (2009)

    ADS  Google Scholar 

  49. G. J. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of the 19th Annual Precise Time and Time Interval Systems and Applications Meeting, Redondo Beach, pp. 133–147 (1987)

  50. K. Sugiyama, J. Yoda, Production of \({{\rm YbH}}^{+}\) by chemical reaction of\({{\rm Yb}}^{+}\) in excited states with \({{\rm H}}_{2}\) gas. Phys. Rev. A 55, R10–R13 (1997)

    ADS  Google Scholar 

  51. B. Dubost, R. Dubessy, B. Szymanski, S. Guibal, J.-P. Likforman, L. Guidoni, Isotope shifts of natural \({{\rm Sr}}^{+}\) measured by laser fluorescence in a sympathetically cooled coulomb crystal. Phys. Rev. A 89, 032504 (2014)

    ADS  Google Scholar 

  52. L. Hornekær, N. Kjærgaard, A.M. Thommesen, M. Drewsen, Structural properties of two-component Coulomb crystals in linear Paul traps. Phys. Rev. Lett. 86(10), 1994–1997 (2001)

    ADS  Google Scholar 

  53. K. Sheridan, M. Keller, Weighing of trapped ion crystals and its applications. New J. Phys. 13, 123002 (2011)

    ADS  Google Scholar 

  54. H. L. Partner, Development and Characterization of a \(^{171}{{\rm Yb}}^{+}\)Miniature Ion Trap Frequency Standard. PhD thesis, University of New Mexico, Albuquerque (2013)

Download references

Acknowledgements

The authors would like to gratefully acknowledge U.K. Defence Science and Technology Laboratory (Dstl) and Innovate UK for funding the development here reported. We would also like to thank our colleagues Pravin Patel for his assistance with the electronics, Peter Nisbet-Jones for his work on the vacuum system, and Steven King for his work at the beginning of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mulholland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulholland, S., Klein, H.A., Barwood, G.P. et al. Laser-cooled ytterbium-ion microwave frequency standard. Appl. Phys. B 125, 198 (2019). https://doi.org/10.1007/s00340-019-7309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7309-6

Navigation