Skip to main content
Log in

Ultrafast surface plasmon-polariton interference and switching in multiple crossing dielectric waveguides

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we investigate propagation effects and interference switching of surface plasmon-polaritons (SPPs) in a junction of multiple crossed waveguides. These waveguides are produced on a thin gold layer by a simple photolithographic procedure. The waveguide dimensions are optimized for SPP excitation and propagation along two crossed input waveguides. At the waveguide intersection, different possibilities for SPP propagation into multiple output waveguides are offered. Using leakage radiation microscopy, we find that the SPPs preferably propagate into only one specific direction different from the direction of the input waveguides with avoidance of signal backscattering into the input direction. Furthermore, it is demonstrated that the SPP intensity at the output waveguide can be tuned by interference effects induced by a phase shift of the excitation laser beams. Additionally, we study the influence of different angles between the two input and the one specific output waveguides of the junction structure on the propagation properties of SPP modes in order to demonstrate a highest possible energy flux into the output waveguide. The experimental investigations are supported by finite-difference time-domain simulations. Good agreement between experimental results and numerical simulations is obtained. Applications of this effect are discussed for realization of ultrafast optical/plasmonic switches and optical logic gate structures with potential for integration and cascading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Lu, X. Hu, H. Yang, Q. Gong, Sci. Rep. 3 (2013)

  2. H. Wei, Z. Wang, X. Tian, M. Kll, H. Xu, Nat. Commun. 2, 387 (2011)

    Article  ADS  Google Scholar 

  3. S.K. Kwong, G.A. Rakuljic, A. Yariv, Appl. Phys. Lett. 48, 201 (1986)

    Article  ADS  Google Scholar 

  4. Y. Fainman, C.C. Guest, S.H. Lee, Appl. Opt. 25, 1598 (1986)

    Article  ADS  Google Scholar 

  5. M. Ogusu, S. Tanaka, K. Kuroda, Jpn. J. Appl. Phys. 29, L1265 (1990)

    Article  ADS  Google Scholar 

  6. V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, Nature 431, 1081 (2004)

    Article  ADS  Google Scholar 

  7. Y. Zhang, Y. Zhang, B. Li, Opt. Express 15, 9287 (2007)

    Article  ADS  Google Scholar 

  8. Q.F. Xu, M. Lipson, Opt. Express 15, 924 (2007)

    Article  ADS  Google Scholar 

  9. J. Zhang, K.F. MacDonald, N.I. Zheludev, Light Sci. Appl. 1, e18 (2012)

    Article  Google Scholar 

  10. X. Fang, M.L. Tseng, J.Y. Ou, K.F. Macdonald, D.P. Tsai, N.I. Zheludev, Appl. Phys. Lett. 104, 141102 (2014)

    Article  ADS  Google Scholar 

  11. X. Fang, K.F. MacDonald, N.I. Zheludev, Light Sci. Appl. 4, e292 (2015)

    Article  Google Scholar 

  12. H.J. Caulfield, J. Westphal, Inf. Sci. 162, 21 (2004)

    Article  MathSciNet  Google Scholar 

  13. L. Qian, H.J. Caulfield, Inf. Sci. 176, 3379 (2006)

    Article  MathSciNet  Google Scholar 

  14. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  15. T.W. Ebbesen, C. Genet, S.I. Bozhevolnyi, Phys. Today 61, 44 (2008)

    Article  ADS  Google Scholar 

  16. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Nano Lett. 11, 471 (2011)

    Article  ADS  Google Scholar 

  17. Y. Fang, M. Sun, Light Sci. Appl. 4, e294 (2015)

    Article  Google Scholar 

  18. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Nature 551, 508 (2006)

    Article  ADS  Google Scholar 

  19. S.I. Bozhevolnyi, J. Jung, Opt. Express 16, 2676 (2008)

    Article  ADS  Google Scholar 

  20. E. Verhagen, J.A. Dionne, L. Kuipers, H.A. Atwater, A. Polman, Nano Lett. 8, 2925 (2008)

    Article  ADS  Google Scholar 

  21. E. Verhagen, M. Spasenovic, A. Polman, L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009)

    Article  ADS  Google Scholar 

  22. C. Reinhardt, R. Kiyan, S. Passinger, A.L. Stepanov, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 89, 321 (2007)

    Article  ADS  Google Scholar 

  23. J. Grandidier, S. Massenot, G.C. Des Francs, A. Bouhelier, J.C. Weeber, L. Markey, Dereux, J. Renger, M.U. Gonzlez, R. Quidant, Phys. Rev. B Condens. Matter Mater. Phys. 78, 1 (2008)

    Article  Google Scholar 

  24. A. Seidel, C. Reinhardt, T. Holmgaard, W. Cheng, T. Rosenzveig, K. Leosson, S.I. Bozhevolnyi, B.N. Chichkov, IEEE Photonics J. 2, 652 (2010)

    Article  Google Scholar 

  25. P. Berini, R. Charbonneau, N. Lahoud, Nano Lett. 7, 1376 (2007)

    Article  ADS  Google Scholar 

  26. P. Berini, Adv. Opt. Photonics 1, 484 (2009)

    Article  Google Scholar 

  27. V.S. Volkov, Z. Han, M.G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, S.I. Bozhevolnyi, Opt. Lett. 36, 4278 (2011)

    Article  ADS  Google Scholar 

  28. S.A. Maier, P.G. Kik, H. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.G. Requicha, Nat. Mater. 2, 229 (2003)

    Article  ADS  Google Scholar 

  29. A.B. Evlyukhin, S.I. Bozhevolnyi, Laser Phys. Lett. 3, 396 (2006)

    Article  ADS  Google Scholar 

  30. A.B. Evlyukhin, C. Reinhardt, E. Evlyukhina, B.N. Chichkov, Opt. Lett. 34, 2237 (2009)

    Article  ADS  Google Scholar 

  31. D. Van Orden, Y. Fainman, V. Lomakin, Opt. Lett. 34, 422 (2009)

    Article  ADS  Google Scholar 

  32. S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, J.M. Hvam, Phys. Rev. Lett. 86, 3008 (2001)

    Article  ADS  Google Scholar 

  33. T. Søndergaard, S.I. Bozhevolnyi, Phys. Rev. B 67, 165405 (2003)

    Article  ADS  Google Scholar 

  34. A. Markov, C. Reinhardt, B. Ung, A.B. Evlyukhin, W. Cheng, B.N. Chichkov, M. Skorobogatiy, Opt. Lett. 36, 2468 (2011)

    Article  ADS  Google Scholar 

  35. C. Reinhardt, A.B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, B.N. Chichkov, J. Opt. Soc. Am. B 30, 2898 (2013)

    Article  ADS  Google Scholar 

  36. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, Q. Gong, Nano Lett. 12, 5784 (2012)

    Article  ADS  Google Scholar 

  37. C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, Q. Gong, Plasmonics 8, 749 (2013)

    Article  Google Scholar 

  38. D.B. Miller, Nat. Photonics 4, 3 (2010)

    Article  ADS  Google Scholar 

  39. L.B. Soldano, E.C.M. Pennings, J. Lightwave Technol. 13, 615 (1995)

    Article  ADS  Google Scholar 

  40. A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J.G. Wangüemert-Pérez, P. Cheben, J.H. Schmid, J. Lapointe, D. Xu, S. Janz, Laser Photonics Rev. 7, 12 (2013)

    Article  Google Scholar 

  41. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, C. Fotakis, ACS Nano 2, 2257 (2008)

    Article  Google Scholar 

  42. H. Kawata, J.M. Carter, A. Yen, H.I. Smith, Microelectron. Eng. 9, 31 (1989)

    Article  Google Scholar 

  43. J.C. Love, D.B. Wolfe, H.O. Jacobs, G.M. Whitesides, Langmuir 17, 6005 (2001)

    Article  Google Scholar 

  44. C. Reinhardt, V.F. Paz, L. Zheng, K. Kurselis, T. Birr, U. Zywietz, B. Chichkov, K. Frenner, W. Osten, in Optically Induced Nanostructures: Biomedical and Technical Applications, ed. by K. König, A. Ostendorf (Walter de Gruyter GmbH & Co KG, 2015)

  45. C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A.L. Stepanov, A.B. Evlyukhin, B.N. Chichkov, in Proceedings of SPIE 6642, Plasmonics: Nanoimaging, 664205 (2007)

  46. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F.R. Aussenegg, A. Leitner, J.R. Krenn, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 149, 220 (2008)

    Article  Google Scholar 

  47. C. Reinhardt, A. Seidel, A.B. Evlyukhin, W. Cheng, B.N. Chichkov, J. Opt. Soc. Am. B 26, B55 (2009)

    Article  Google Scholar 

  48. C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, B. Chichkov, Appl. Phys. A Mater. Sci. Process. 100, 347 (2010)

    Article  ADS  Google Scholar 

  49. N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, J. Schilling, New J. Phys. 16(6), 63053 (2014)

    Article  Google Scholar 

  50. A. Hohenau, J.R. Krenn, Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, T.W. Ebbesen, Opt. Express 19, 25749, (2011)

    Article  ADS  Google Scholar 

  51. C. Schwarz, O. Hüter, T. Brixner, J. Opt. Soc. Am. B 32, 933–945 (2015)

    Article  ADS  Google Scholar 

  52. A.M. Weiner, Opt. Commun. 284, 3669–3692 (2011)

    Article  ADS  Google Scholar 

  53. M. Rud, V. Mkhitaryan, A.E. Cetin, T.A. Miller, A. Carrilero, S. Wall, F.J.G. de Abajo, H. Altug, V. Pruneri, arXiv:1506.03739, 119 (2015)

  54. K.F. MacDonald, Z.L. Samson, M.I. Stockman, N.I. Zheludev, Nat. Photonics 3, 55–58 (2008)

    Article  ADS  Google Scholar 

  55. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)

    MATH  Google Scholar 

  56. C. Lemke, C. Schneider, T. Leissner, D. Bayer, J.W. Radke, A. Fischer, P. Melchior, A.B. Evlyukhin, B.N. Chichkov, C. Reinhardt, M. Bauer, M. Aeschlimann, Nano Lett. 13, 1053 (2013)

    Article  ADS  Google Scholar 

  57. C. Lemke, T. Leissner, A.B. Evlyukhin, J.W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B.N. Chichkov, C. Reinhardt, M. Bauer, Nano Lett. 14, 5 (2014)

    Article  Google Scholar 

  58. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, H. Schuessler, Appl. Opt. 48, 5683 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support of this work from the Deutsche Forschungsgemeinschaft (DFG: SPP 1391 “Ultrafast Nanooptics”, SFB/TRR 123 “Planar Optronic Systems” and EV 220/2-1) and support of the Laboratory of Nano and Quantum Engineering (LNQE). The authors further acknowledge support from Hannover School of Nanotechnology (HSN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Birr.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birr, T., Zywietz, U., Fischer, T. et al. Ultrafast surface plasmon-polariton interference and switching in multiple crossing dielectric waveguides. Appl. Phys. B 122, 164 (2016). https://doi.org/10.1007/s00340-016-6437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6437-5

Keywords

Navigation