Skip to main content
Log in

Investigating the Characteristics of a Double Circular Ring Resonators Slow Light Device Based on the Plasmonics-Induced Transparency Coupled with Metal-Dielectric-Metal Waveguide System

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have numerically investigated an analog of electromagnetically induced transparency (EIT) in a metal-dielectric-metal (MDM) waveguide bend. The geometry consists of two asymmetrical stubs extending parallel to an arm of a straight MDM waveguide bend. Finite-difference time-domain simulations show that a transparent window is located at 1550 nm, which is the phenomenon of plasmonic-induced transparency (PIT). Signal wavelength is assumed to be 820 nm. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. Multiple-peak plasmon-induced transparency can be realized by cascading multiple cavities with different lengths and suitable cavity-cavity separations. Large group index up to 73 can be obtained at the PIT window. Our proposed configuration may thus be applied to storing and stopping light in plasmonic waveguide bends. In addition, the relationship between the transmission characteristics and the geometric parameters including the radius of the nano-ring, the coupling distance, and the deviation length between the stub and the nano-ring is studied in a step further. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. For indirect coupling, formation of transparency window is determined by resonance detuning, but, evolution of transparency is mainly attributed to the change of the coupling distance. Theoretical results may provide a guideline for control of light in highly integrated optical circuits. The characteristics of our plasmonic system indicate a significant potential application in integrated optical circuits such as optical storage, ultrafast plasmonic switch, highly performance filter, and slow light devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Atwater HA (2007) The promise of plasmonics. Sci Am Mag 296(4):56–63

    Article  CAS  Google Scholar 

  2. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  3. Kaatuzian H, Photonics, 3rd printing (AKU Press, 2017), Vol 2, in Persian

  4. Min Q, Chen C, Berini P, Gordon R (2010) Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications. Opt Express 18:19009–19019

    Article  CAS  Google Scholar 

  5. Jenkins FA, White HE (1981) “Fundamentals of Optics,” 4th Edition, McGraw-Hill

  6. Fedyanin DY, Krasavin AV, Arsenin AV, Zayats AV (2012) Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits. Nano Lett 12:2459–2463

    Article  CAS  Google Scholar 

  7. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Book  Google Scholar 

  8. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762

    Article  CAS  Google Scholar 

  9. Han Z (2010) Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides. Photonics Nanostruct Fundam Appl 8(3):172–176

    Article  Google Scholar 

  10. Zhang Y, Darmawan S, Tobing LYM, Mei T, Zhang DH (2011) Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer. J Opt Soc Am B 28(1):28–36

    Article  Google Scholar 

  11. Zhu S, Lo GQ, Kwong DL (2012) Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Opt Exp 20(6):5867–5881

    Article  CAS  Google Scholar 

  12. Zhanghua H, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19(4):3251

    Article  Google Scholar 

  13. Xu Y, Zhang J, Song G (2013) Slow surface plasmons in plasmonic grating wave guide. IEEE Photon Technol Let 25(5):410–413

    Article  Google Scholar 

  14. Yang X, Hu X, Chai Z, Lu C, Yang H, Gong Q (2014) Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies. Appl Phys Lett 104(22):221114–1–221114-5

    Article  Google Scholar 

  15. Hassani Keleshtery M, Kaatuzian H, Mir A (2016) Analysis and investigation of slow light based on plasmonic induced transparency in metal-dielectric-metal ring resonator in a waveguide system with different geometrical designs. Opt Photon J 6(8B):177–184

    Article  Google Scholar 

  16. Wang Y, Wang J, Liu C, Luo Q, Zhang W, Gao S (2013) Plasmonic-induced transparency in metal–dielectric–metal waveguide bends. Appl Phys Express 6:082201

    Article  Google Scholar 

  17. Zhou QZ, He P, Xu J, Zhuang X, Li Y, Pan A (2014) Gradient index plasmonic ring resonator with high extinction ratio. Opt Commun 312:280–283

    Article  CAS  Google Scholar 

  18. Dupuis N, Lee BG, Rylyakov AV, Kuchta DM, Baks CW, Orcutt JS, Gill DM, Green WMJ, Schow CL (2015) Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 Mach–Zehnder silicon photonic switches. J Lightw Technol 33(17):3597–3606

    Article  CAS  Google Scholar 

  19. Abdul-Wahab S, Ahmed A, Marikar F (2011) The environmental impact of gold mines: pollution by heavy metals. Cent Eur J Eng 2(2):304–313

    Google Scholar 

  20. Kelly PE (2014) “Properties of materials,” CRC Press, Taylor and Fransis is an imprint of Group, International Standard Book Number: 13:978–1–4822-0624-1

  21. Smith WF, Hashemi J “Foundation of materials science and engineering,” 4th edition. McGraw-Hill. P. 509. ISBN0–07–295358-6

  22. Chien F-T, Chen C-W, Lee T-C, Wang C-L, Cheng C-H, Kang T-K, Chiu H-C (2013) A novel self-aligned double-channel polysilicon thin-film transistor. IEEE Trans Electron Dev 60(2):799–804

    Article  CAS  Google Scholar 

  23. Lu Q, Zou C-L, Chen D, Zhou P, Wu G (2014) Extreme light confinement and low loss in triangle hybrid plasmonic waveguide. Opt Commun 319:141–146

    Article  CAS  Google Scholar 

  24. Keshavarz Moazzam M, Kaatuzian H (2015) Design and investigation of N-type metal/insulator/semiconductor/metal structure two-port electro-plasmonic addressed routing switch. Appl Opt 54(20):6199–6207

    Article  Google Scholar 

  25. Wang G, Zhang W, Gong Y, Liang J (2015) Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide. IEEE Photon Technol Lett 27(1)

    Article  CAS  Google Scholar 

  26. Eftekharian A, Atikian H, Majedi AH (2013) Plasmonic superconducting nanowire single photon detector. Opt Exp 21(3):3043–3054

    Article  CAS  Google Scholar 

  27. Nielsen MP, Ashfar A, Cadien K, Elezzabi AY (2013) Plasmonic materials for metal-insulator-semiconductor-insulator-metal nanoplasmonic waveguides on silicon-on-insulator platform. Opt Mater 36:294–298

    Article  CAS  Google Scholar 

  28. Zhan S, Li H, Cao G, He Z, Li B, Yang H (2014) Slow light based on plasmonic-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D Appl Phys 47(20):205101

    Article  Google Scholar 

  29. Han X, Wang T, Li X, Liu B, He Y, Tang J (2015) Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system. J Phys D: Appl Phys 48(10pp):235102

    Article  Google Scholar 

  30. Mote RG, Chu H-S, Bai P, Li E-P (2012) Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Opt Commun 285:3709–3713

    Article  CAS  Google Scholar 

  31. Sorger VJ, Ye Z, Oulton RF, Wang Y, Bartal G, Yin X, Zhang X (2011) Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat Commun doi: 10.1038, ncomms 1315, pp

  32. Hassani Keleshtery M, Kaatuzian H, Mir A, Zandi A (2017) Method proposing a slow light ring resonator with a metal-dielectric-metal waveguide system based on plasmonic induced transparency. Appl Opt 56(15):6199–6207

    Google Scholar 

  33. Hassan Kaatuzian, Ahmad Naseri Taheri (2015) Application of nano-scale plasmonic structures in design of stub filters-A step towards realization of plasmonic switches. INTECH, Book Chapter, Chapter 4, doi:https://doi.org/10.5772/59877

    Google Scholar 

  34. Taheri AN, Kaatuzian H (2014) Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on metal-insulator-metal stub filter. Appl Opt 53(28):6546–6553

    Article  Google Scholar 

  35. Melikyan A, Lindenmann N, Walheim S, Leufke PM, Ulrich S, Ye J, Vincze P, Hahn H, Schimmel T, Koos C, Freude W, Leuthold J (2011) Surface plasmon polariton absorption modulator. Opt Exp 19(9):8855–8869

    Article  CAS  Google Scholar 

  36. Hu M, Wang F, Liang R, Zhou S, Xiao L (2015) Plasmonic-induced transparency based on plasmonic asymmetric dual side-coupled cavities. Elsevier Phys Lett A 379:581–584

    Article  CAS  Google Scholar 

  37. Zhan Sh, Li H, Cao G, He Z, Li B, Yang H (2014) Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D: Appl Phys. 47 205101 (6pp)

    Article  Google Scholar 

  38. Liu S-D, Yang Z, Liu R-P, Li X-Y (2011) Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity. Opt Express 19(16):15363

    Article  Google Scholar 

  39. Lu Y, Rhee JY, Jang WH, Lee YP (2010) Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Opt Express 18(20):20912–20917

    Article  CAS  Google Scholar 

  40. Olivieri A, Chen C, Hassan S, Lisicka-Skrzek E, Tait RN, Berini P (2015) Plasmonic nanostructured metal−oxide−semiconductor reflection modulators. Nano Lett 15:2304–2311

    Article  CAS  Google Scholar 

  41. Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J, Zhang W (2011) Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express 19(9):8912

    Article  CAS  Google Scholar 

  42. Zhu S, Lo GQ, Kwong DL (2011) Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides. Appl Phys Lett 99(1–3):151114

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express thanks to their colleagues in Photonic Research Laboratory (PRL), at Electrical Engineering Dept. of Amirkabir University of Technology (AUT) for their friendly support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keleshtery, M.H., Mir, A. & Kaatuzian, H. Investigating the Characteristics of a Double Circular Ring Resonators Slow Light Device Based on the Plasmonics-Induced Transparency Coupled with Metal-Dielectric-Metal Waveguide System. Plasmonics 13, 1523–1534 (2018). https://doi.org/10.1007/s11468-017-0660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0660-8

Keywords

Navigation