Skip to main content
Log in

Semiconductor optical amplifier direct modulation with double-stage birefringent fiber loop

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The feasibility of cascading two birefringent fiber loops (BFLs) for directly modulating a conventional semiconductor optical amplifier (SOA) at a faster data rate than that being possible by its limited electrical bandwidth is demonstrated for the first time. The experimental results reveal the improvements in the quality characteristics of the encoded signal compared to those achieved with a single-stage BFL. The observed trends are complemented by numerical simulations, which allow to investigate the impact of the double-stage BFL detuning and specify how this critical parameter must be selected for enhanced performance. Provided that it is properly tailored, the proposed optical notch filtering scheme efficiently compensates for the pattern-dependent SOA response and enables this element to be employed as intensity modulator with improved performance at enhanced data speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.J. O’Mahony, J. Lightwave Technol. 6(4), 531 (1988)

    Article  ADS  Google Scholar 

  2. P.B. Hansen, G. Eisenstein, J.M. Wiesenfeld, R.S. Tucker, G. Raybon, Electron. Lett. 25(9), 563 (1989)

    Article  Google Scholar 

  3. L. Gillner, IEE Proc. Optoelectron. 139(5), 331 (1992)

    Article  ADS  Google Scholar 

  4. M.J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic Publishers, Dordrecht, 2002)

    Google Scholar 

  5. M. Amaya, Performances improvement of a semiconductor optical amplifier by optical injection at gain transparency for optical telecommunication networks. Ph.D. thesis (in French), Brest (2006)

  6. J. Mørk, M.L. Nielsen, T.W. Berg, Opt. Photon. News 14(7), 42 (2003)

    Article  ADS  Google Scholar 

  7. F. Vacondio, M.M. Sisto, W. Mathlouthi, L.A. Rusch, S. LaRochelle, in Proceedings of the IEEE International Topical Meeting in Microwave Photonics, 4153767 (2006)

  8. A. Meehan, M.J. Connelly, Opt. Commun. 341, 241 (2015)

    Article  Google Scholar 

  9. J.H. Lee, S.H. Cho, H.H. Lee, E.S. Jung, J.H. Yu, B.W. Kim, S.H. Lee, J.S. Koh, B.H. Sung, S.J. Kang, J. Lightwave Technol. 28(4), 344 (2010)

    Article  ADS  Google Scholar 

  10. H. Takesue, T. Sugie, J. Lightwave Technol. 21(11), 2546 (2003)

    Article  ADS  Google Scholar 

  11. J.M. Joo, M.K. Hong, D.T. Pham, S.K. Han, J. Lightwave Technol. 30(16), 2661 (2012)

    Article  ADS  Google Scholar 

  12. M.L. Nielsen, K. Mizutani, S. Sudo, K. Tsuruoka, T. Okamoto, K. Sato, K. Kudo, IEEE Photon. Technol. Lett. 18(19), 1987 (2006)

    Article  Google Scholar 

  13. E. Udvary, T. Berceli, IEEE Trans. Microw. Theory Tech. 58(11), 3161 (2010)

    Article  Google Scholar 

  14. H. Kim, IEEE Photon. Technol. Lett. 22(18), 1379 (2010)

    Article  Google Scholar 

  15. T. Su, M. Zhang, X. Chen, Z. Zhang, M. Liu, L. Liu, S. Huang, Opt. Laser Technol. 51, 90 (2013)

    Article  ADS  Google Scholar 

  16. M. Zhang, D. Wang, Z. Cao, X. Chen, S. Huang, Opt. Commun. 308, 248 (2013)

    Article  ADS  Google Scholar 

  17. G. Cossu, F. Bottoni, R. Corsini, M. Presi, E. Ciaramella, IEEE Photon. Technol. Lett. 25(21), 2119 (2013)

    Article  Google Scholar 

  18. K.E. Zoiros, P. Morel, AIP Adv. 4(7), 077107 (2014)

    Article  ADS  Google Scholar 

  19. K.E. Zoiros, P. Morel, M. Hamze, Microwave Opt. Technol. Lett. 57(10), 2247 (2015)

    Article  Google Scholar 

  20. L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, X. Dong, Microwave Opt. Technol. Lett. 43(1), 23 (2004)

    Article  Google Scholar 

  21. X. Ma, Z. Wu, G. Kai, Y. Liu, L. Liu, H. Zhang, S. Yuan, X. Dong, Opt. Fiber Technol. 12(1), 1 (2006)

    Article  ADS  Google Scholar 

  22. G. Qiao, Z. Cao, R. Wang, X. Ji, B. Gao, J. Peng, F. Xu, B. Yu, Opt. Commun. 285(12), 2836 (2012)

    Article  ADS  Google Scholar 

  23. X. Rejeaunier, S. Calvez, P. Mollier, H. Porte, J.P. Goedgebuer, Opt. Commun. 185(4–6), 375 (2000)

    Article  ADS  Google Scholar 

  24. D.F. Bendimerad, B.E. Benkelfat, R. Hamdi, Y. Gottesman, O. Seddiki, B. Vinouze, J. Lightwave Technol. 30(13), 2103 (2012)

    Article  ADS  Google Scholar 

  25. S. Singh, R.S. Kaler, Opt. Commun. 274(1), 105 (2007)

    Article  ADS  Google Scholar 

  26. Z.V. Rizou, K.E. Zoiros, A. Hatziefremidis, M.J. Connelly, Appl. Phys. B Lasers Opt. 119(2), 247 (2015)

    Article  ADS  Google Scholar 

  27. Z.C. Luo, W.J. Cao, A.P. Luo, W.C. Xu, J. Lightwave Technol. 30(12), 1857 (2012)

    Article  ADS  Google Scholar 

  28. L.G. Kazovsky, W.T. Shaw, D. Gutierrez, N. Cheng, S.W. Wong, J. Lightwave Technol. 25(11), 3428 (2007)

    Article  ADS  Google Scholar 

  29. R. Davey, J. Kani, F. Bourgart, K. McCammon, IEEE Commun. Mag. 44(10), 50 (2006)

    Article  Google Scholar 

  30. Y. Liu, E. Tangdiongga, Z. Li, H. De Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, H. Dorren, J. Lightwave Technol. 25(1), 103 (2007)

    Article  ADS  Google Scholar 

  31. N. Cheng, S.H. Yen, J. Cho, Z. Xu, T. Yang, Y. Tang, L.G. Kazovsky, in Proceedings of the Asia Communications and Photonics Conference and Exhibition, p. FS4 (2009)

  32. G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)

    Book  Google Scholar 

  33. C.W. Chow, C.S. Wong, H.K. Tsang, IEEE Photon. Technol. Lett. 17(3), 693 (2005)

    Article  Google Scholar 

  34. K.E. Zoiros, Z.V. Rizou, M.J. Connelly, in 3rd Pan-Hellenic Conference on Electronics and Telecommunications (Ioannina, 2015)

  35. D. Liu, N.Q. Ngo, H. Liu, D. Liu, Opt. Commun. 282(8), 1598 (2009)

    Article  ADS  Google Scholar 

  36. W. Johnstone, Eye Diagrams and BER in Optical Communications BER (COM) (OptoSci Ltd, Glasgow, 2010)

    Google Scholar 

  37. R. Hui, M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, Burlington, 2009), p. 520

    Google Scholar 

  38. G.P. Agrawal, N.A. Olsson, IEEE J. Quantum Electron. 25(11), 2297 (1989)

    Article  ADS  Google Scholar 

  39. M.A. Ali, A.F. Elrefaie, S.A. Ahmed, IEEE Photon. Technol. Lett. 4(3), 280 (1992)

    Article  Google Scholar 

  40. J.C. Cartledge, G.S. Burley, J. Lightwave Technol. 7(3), 568 (1989)

    Article  ADS  Google Scholar 

  41. K.E. Zoiros, C. Botsiaris, C.S. Koukourlis, T. Houbavlis, Opt. Eng. 45(11), 115005 (2006)

    Article  ADS  Google Scholar 

  42. J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S.B. Ezra, S. Tsadka, W. Freude, J. Leuthold, IEEE Photon. Technol. Lett. 19(24), 1955 (2007)

    Article  Google Scholar 

  43. R. Gutiérrez-Castrejón, L. Occhi, L. Schares, G. Guekos, Opt. Commun. 195(1–4), 167 (2001)

    Article  ADS  Google Scholar 

  44. P.J. Winzer, M. Pfennigbauer, M.M. Strasser, W.R. Leeb, J. Lightwave Technol. 19(9), 1263 (2001)

    Article  ADS  Google Scholar 

  45. Z.V. Rizou, K.E. Zoiros, A. Hatziefremidis, M.J. Connelly, IEEE J. Sel. Top. Quantum Electron. 19(5), 3100109 (2013)

    Article  Google Scholar 

  46. M.L. Nielsen, K. Tsuruoka, T. Kato, T. Morimoto, S. Sudo, T. Okamoto, K. Mizutani, H. Sakuma, K. Sato, K. Kudo, J. Lightwave Technol. 28(5), 837 (2010)

    Article  ADS  Google Scholar 

  47. Agilent Technologies Application Note 1340-1: Characterizing high-speed optical transmitters: Compliance testing with the Agilent 86100A Infiniium DCA

  48. A.M. Lomax, I.H. White, IEE Proc. Optoelectron. 138(2), 178 (1991)

    Article  Google Scholar 

  49. K.Y. Cho, U.H. Hong, H. Choi, Y.C. Chung, Opt. Commun. 312, 159 (2014)

    Article  ADS  Google Scholar 

  50. R.C. Figueiredo, N.S. Ribeiro, C.M. Gallep, E. Conforti, Microw. Opt. Technol. Lett. 57(6), 1500 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

K.E. Zoiros acknowledges enlighting discussion with Dr. N. Pleros concerning overshoot measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos E. Zoiros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, T., Rizou, Z.V., Zoiros, K.E. et al. Semiconductor optical amplifier direct modulation with double-stage birefringent fiber loop. Appl. Phys. B 122, 158 (2016). https://doi.org/10.1007/s00340-016-6426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6426-8

Keywords

Navigation