Skip to main content
Log in

Performance tolerance analysis of birefringent fiber loop for semiconductor optical amplifier pattern effect suppression

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we analyze the performance of the birefringent fiber loop (BFL) when the settings of the components that construct this module are not perfect. The BFL is employed for suppressing the pattern effect on directly amplified data in a semiconductor optical amplifier (SOA). The analysis is conducted by describing the non-optimum BFL transmission response using Jones matrix method. This allows to formulate a comprehensive model, which is validated by comparing it to the experiment. Then we investigate and specify how sensitive the BFL is to imperfections of its building components by assessing its performance against the output amplitude modulation, power penalty, and crosstalk. For each critical operating parameter, we derive the tolerance range within which these performance metrics are acceptable. The obtained results suggest that the BFL can efficiently mitigate the SOA pattern effect even if it is built from non-ideal components. This can be achieved provided that these components are designed according to their extracted operating conditions, which are practically satisfiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Zhao, T.T. Song, Q. Wang, Instr. Sci. Technol. 40(4), 239 (2012)

    Article  Google Scholar 

  2. S. Ma, W. Li, H. Hu, N.K. Dutta, Opt. Commun. 285(12), 2832 (2012)

    Article  ADS  Google Scholar 

  3. M.P. Fok, W.W. Tang, C. Shu, Opt. Express 13(12), 4752 (2005)

    Article  ADS  Google Scholar 

  4. Y.W. Lee, J. Jung, B. Lee, IEEE Photon. Technol. Lett. 16(1), 54 (2004)

    Article  ADS  Google Scholar 

  5. G. Sun, Y. Zhou, Y. Hu, Y. Chung, Opt. Fiber Technol. 17(1), 79 (2011)

    Article  ADS  Google Scholar 

  6. C.W. Chow, C.S. Wong, H.K. Tsang, IEEE Photon. Technol. Lett. 17(3), 693 (2005)

    Article  ADS  Google Scholar 

  7. F. Wang, Y. Yu, X. Huang, X. Zhang, Opt. Commun. 282(12), 2292 (2009)

    Article  ADS  Google Scholar 

  8. B.E. Olsson, P. Ohlen, L. Rau, D.J. Blumenthal, IEEE Photon. Technol. Lett. 12(7), 846 (2000)

    Article  ADS  Google Scholar 

  9. C.W. Chow, H.K. Tsang, IEEE Photon. Technol. Lett. 17(6), 1313 (2005)

    Article  ADS  Google Scholar 

  10. B.E. Olsson, P.A. Andrekson, IEEE Photon. Technol. Lett. 9(6), 764 (1997)

    Article  ADS  Google Scholar 

  11. Q. Wang, H. Dong, G. Zhu, H. Sun, J. Jaques, A.B. Piccirilli, N. Dutta, Opt. Commun. 260(1), 81 (2006)

    Article  ADS  Google Scholar 

  12. O. Frazão, J.M. Baptista, J.L. Santos, Sensors 7(11), 2970 (2007)

    Article  Google Scholar 

  13. K.E. Zoiros, C. O’Riordan, M.J. Connelly, IEEE Photon. Technol. Lett. 22(4), 221 (2010)

    Article  ADS  Google Scholar 

  14. K.E. Zoiros, C. Riordan, M.J. Connelly, in Conference on Networks and Optical Communications (NOC), p. 141 (2011)

  15. Z.V. Rizou, K.E. Zoiros, A. Hatziefremidis, M.J. Connelly, J. Sel, Top. Quantum Electron. 19(5), 1 (2013)

    Article  Google Scholar 

  16. D.R. Zimmerman, L.H. Spiekman, J. Lightwave Technol. 22(1), 63 (2004)

    Article  ADS  Google Scholar 

  17. G.P. Agrawal, N.A. Olsson, IEEE J. Quantum Electron. 25(11), 2297 (1989)

    Article  ADS  Google Scholar 

  18. K. Inoue, Electron. Lett. 33(10), 885 (1997)

    Article  Google Scholar 

  19. T. Watanabe, H. Yasaka, N. Sakaida, M. Koga, IEEE Photon. Technol. Lett. 10(10), 1422 (1998)

    Article  ADS  Google Scholar 

  20. J. Yu, P. Jeppesen, J. Lightwave Technol. 19(9), 1316 (2001)

    Article  ADS  Google Scholar 

  21. C.S. Wong, H.K. Tsang, Opt. Commun. 232(1–6), 245 (2004)

    Article  ADS  Google Scholar 

  22. K.E. Zoiros, T. Siarkos, C.S. Koukourlis, Opt. Commun. 281(14), 3648 (2008)

    Article  ADS  Google Scholar 

  23. J. Dong, X. Zhang, F. Wang, W. Hong, D. Huang, Opt. Commun. 281(22), 5618 (2008)

    Article  ADS  Google Scholar 

  24. K. Hussain, R. Pradhan, P.K. Datta, Opt. Quantum Electron. 42(1), 29 (2010)

    Article  Google Scholar 

  25. E.A. Kuzin, H.C. Núñez, N. Korneev, Opt. Commun. 160(1–3), 37 (1999)

    Article  ADS  Google Scholar 

  26. P. Ma, N. Song, J. Jin, J. Song, X. Xu, Opt. Laser Technol. 44(6), 1829 (2012)

    Article  ADS  Google Scholar 

  27. C.S. Kim, Y.G. Han, R.M. Sova, U.C. Paek, Y. Chung, J.U. Kang, IEEE Photon. Technol. Lett. 15(2), 269 (2003)

    Article  ADS  Google Scholar 

  28. X. Ma, Z. Wu, G. Kai, Y. Liu, L. Liu, H. Zhang, S. Yuan, X. Dong, Opt. Fiber Technol. 12(1), 1 (2006)

    Article  ADS  Google Scholar 

  29. G. Qiao, Z. Cao, R. Wang, X. Ji, B. Gao, J. Peng, F. Xu, B. Yu, Opt. Commun. 285(12), 2836 (2012)

    Article  ADS  Google Scholar 

  30. R.M. Silva, A. Layeghi, M.I. Zibaii, H. Latifi, J.L. Santos, O. Frazão, J. Lightwave Technol. 30(8), 1032 (2012)

    Article  ADS  Google Scholar 

  31. G. Chen, J.U. Kang, J. Opt. A Pure Appl. Opt. 6(4), 361 (2004)

    Article  ADS  Google Scholar 

  32. C.S. Kim, B. Choi, J.S. Nelson, Q. Li, P.Z. Dashti, H.P. Lee, Opt. Lett. 30(1), 20 (2005)

    Article  ADS  Google Scholar 

  33. J. Bogdanski, J. Ahrens, M. Bourennane, Opt. Express 17(6), 4485 (2009)

    Article  ADS  Google Scholar 

  34. L. Xu, V. Baby, I. Glesk, P.R. Prucnal, Opt. Commun. 244(1–6), 199 (2005)

    Article  ADS  Google Scholar 

  35. R.C. Jones, J. Opt. Soc. Am. A. 31(7), 488 (1941)

    Article  ADS  Google Scholar 

  36. K. Morito, M. Ekawa, T. Watanabe, Y. Kotaki, J. Lightwave Technol. 21(1), 176 (2003)

    Article  ADS  Google Scholar 

  37. K.E. Zoiros, Z.V. Rizou, M.J. Connelly, Opt. Commun. 284(14), 3539 (2011)

    Article  ADS  Google Scholar 

  38. D.K. Mynbaev, L.L. Scheiner, Fiber-Optic Communications Technology, 1st edn. (Prentice-Hall, New Jersey, 2001), p. 189

    Google Scholar 

  39. G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)

    Book  Google Scholar 

  40. R. Ramaswami, K.N. Sivarajan, Optical Networks: A Practical Perspective, 2nd edn. (Morgan Kaufmann Publishers, San Fransico, 2002)

    Google Scholar 

  41. G. Toptchiyski, S. Randel, K. Petermann, S. Diez, E. Hilliger, C. Schmidt, C. Schubert, R. Ludwig, H.G. Weber, J. Lightwave Technol. 18(12), 2188 (2000)

    Article  ADS  Google Scholar 

  42. J. Xu, X. Zhang, J. Mørk, IEEE J. Quantum Electron. 46(1), 87 (2010)

    Article  ADS  Google Scholar 

  43. F.J. MacWilliams, N.J.A. Sloane, Proc. IEEE 64(12), 1715 (1976)

    Article  MathSciNet  Google Scholar 

  44. S. Singh, R.S. Kaler, Opt. Commun. 266(1), 100 (2006)

    Article  ADS  Google Scholar 

  45. J. Villatoro, V. Finazzi, V.P. Minkovich, V. Pruneri, G. Badenes, Appl. Phys. Lett. 91(9), 091109/1 (2007)

    Article  ADS  Google Scholar 

  46. M.A. Mirza, G. Stewart, in Conference on Applied Sciences and Technology (IBCAST), p. 72 (2009)  

  47. See for instance the specifications for “Programmable Differential Group Delay Module”. http://www.generalphotonics.com

  48. See for instance the specifications for “Lightwave Polarization Controller”. http://www.fiberpro.com

  49. See for instance the specifications for “Polarization Maintaining Fused Coupler”. http://www.jdsu.com

  50. Y. Kim, H. Jang, Y. Kim, J. Lee, D. Jang, J. Jeong, J. Lightwave Technol. 21(2), 476 (2003)

    Article  ADS  Google Scholar 

  51. X. Wei, Y. Su, X. Liu, J. Leuthold, S. Chandrasekhar, IEEE Photon. Technol. Lett. 16(6), 1582 (2004)

    Article  ADS  Google Scholar 

  52. R. Gutiérrez-Castrejón, A. Filios, J. Lightwave Technol. 24(12), 4912 (2006)

    Article  ADS  Google Scholar 

  53. S. Boscolo, R. Bhamber, S.K. Turitsyn, V.K. Mezentsev, V.S. Grigoryan, Opt. Commun. 266(2), 656 (2006)

    Article  ADS  Google Scholar 

  54. P. Torres-Ferrera, R. Gutiérrez-Castrejón, Opt. Fiber Technol 20(3), 177 (2014)

    Article  ADS  Google Scholar 

  55. S. Singh, Opt. Commun. 284(3), 828 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by national research project Massive co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF)-Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos E. Zoiros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizou, Z.V., Zoiros, K.E., Hatziefremidis, A. et al. Performance tolerance analysis of birefringent fiber loop for semiconductor optical amplifier pattern effect suppression. Appl. Phys. B 119, 247–257 (2015). https://doi.org/10.1007/s00340-015-6051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6051-y

Keywords

Navigation